Inverses, Roots and Logarithms

In general, finding the inverse $A^{-1}$, square root $\sqrt{A}$ or logarithm $\log A$ of a general multivector $A$ is difficult. However, for certain cases, explicit formulae exist.

Formulae for multivector inverses

For any metric in up to five dimensions, explicit formulae exist for the inverse of a multivector $A$. The implementation used in GeometricAlgebra.jl is mainly based on [3] and is described here.

For a multivector $A ∈ Cl(ℝ^d, ·)$ with metric $·$ in $d$ dimensions, let:

\[[A]_K = \sum_{k=0}^d ⟨A⟩_k · \begin{cases} -1 & \text{if } k ∈ K \\ +1 & \text{otherwise} .\end{cases}\]

Special caseFormula
$A^2 ∈ ℝ$$A^{-1} = \frac{A}{A^2}$
$d = 3$$A^{-1} = \frac{ĀÂÃ}{AĀÂÃ}$
$d = 4$$A^{-1} = \frac{B}{AB}, B = Ā[AĀ]_{3,4}$
$d = 5$$A^{-1} = \frac{B}{AB}, B = ĀÂÃ[AĀÂÃ]_{1,4}$

Formulae for multivector square roots

Special caseFormula
$A^2 ∈ ℝ, A^2 < 0$$\sqrt{A} = \frac{A + λ}{\sqrt{2λ}}, λ = \sqrt{-A^2}$
$A^2 ∈ ℝ, A^2 > 0, I^2 = -1$$\sqrt{A} = \frac{A + Iλ}{(1 + I)\sqrt{λ}}, λ = \sqrt{A^2}$