
Physics and Astronomy, School of Physical and Chemical Sciences,
University of Canterbury, Christchurch, New Zealand

Visualising the Freudenreich 1998
Model of the Galactic Bar and Disk

Joseph Wilson

Phys391 Project 2018

Supervisor: C. Gordon



Abstract

The model of the galactic bar and disk proposed by Freudenreich (1998) [3] is an empirical
model which was derived from the survey of the Diffuse Infrared Background Experiment of
the Cosmic Background Explorer (conducted in 1989–1990). In this report, Freudenreich’s
model is employed to produce an intensity sky map. Important details or concepts involved
in the process of rendering the model are elaborated on, wherever Freudenreich gives little
explanation. The coordinate systems are defined, photometric concepts are clarified, the
method for computing the model is given, and errors or ambiguities in Freudenreich (1998)
are corrected.
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1 Introduction

Many investigations into the structure of the galaxy focus on counting stars (or related
objects) as a function of position and distance, to create a three-dimensional map from
which a model may be derived. Two difficulties with this straightforward method are
accurately determining the distances of objects and obtaining samples in an unbiased
nature. Examples of studies based on this star-counting method include Bahcall (1986) [1]
and, more recently, Pandey, Sharma & Ogura (2006) [5]—but star-counting is not the only
method in use.

Freudenreich (1998) [3] applies photometry to study the galaxy; a technique which has
the advantage of having greater range than star-counting. (This is because as distance
𝐷 increases, the dimming of sources ∝ 𝐷−2 is compensated for by the increasing area
subtended by a solid angle ∝ 𝐷2, ignoring extinction.) The Cosmic Background Explorer
produced a full-sky data set at infrared wavelengths during the Diffuse Infrared Background
Experiment (DIRBE) conducted in 1989–1990, which contained maps at wavelengths rang-
ing from 1.25 µm to 240 µm. Freudenreich uses the near-infrared 1.25 µm, 2.2 µm, 3.5 µm
and 4.9 µm bands (within the standard photometric bands 𝐽 , 𝐾, 𝐿 and 𝑀 , respectively)
to study the galactic background. These maps are used because they do not suffer from
extinction nearly as much as visible wavelength surveys. They are also a good choice for
photometric analysis of the galaxy because the near-infrared maps are dominated by red
giants, whose uniform abundance makes them well-representative of the structure of the
disk [2, §1].1 Freudenreich proposes three closely-related parametric models of the galactic
bar and disk derived from these DIRBE maps (named the S, E and P models, after their
defining bulge shape).

This report describes the process of employing Freudenreich’s model to produce a ce-
lestial intensity map which can be compared to DIRBE observations. Important details in
this process which are not given much explanation by Freudenreich are elaborated upon,
and mathematical or typographical errors in Freudenreich (1998) are identified and cor-
rected. The rest of the introduction defines coordinates, summarises how the DIRBE data
were prepared, and gives an overview of the photometric concepts involved. Section 2 gives
Freudenreich’s parametric model in detail, and section 3 describes how the model was used
to produce an image, which is then compared to observed DIRBE data.

1 Since this report makes frequent reference to Freudenreich, citations also contain a section number
when needed. For instance, the last citation—[2, §1]—refers specifically to section 1 of [2].
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1.1 Coordinates
Heliocentric spherical galactic coordinates (𝑙, 𝑏, 𝑠) are used to map space from the perspec-
tive of the sun. The sun is defined to be at the origin with (𝑙, 𝑏, 𝑠) = (0°, 0°, 0 kpc), and
the line (𝑙, 𝑏) = (0°, 0°) is directed toward the centre of the galaxy. Galactic latitude 𝑙 and
longitude 𝑏 measure angular distance westward and northward from the galactic centre,
respectively, where northward is perpendicular to the galactic equator, on the side to which
Earth’s north pole points.

The model itself employs Cartesian and cylindrical galactocentric coordinates, in which
the centre of the galaxy is defined as the origin. The sun is located at (𝑋, 𝑌 , 𝑍) =
(−𝑅⊙, 0, 𝑍⊙) or (𝑅, 𝜃, 𝑍) = (𝑅⊙, 180°, 𝑍⊙) where 𝑅⊙ is the distance from the galactic
centre to the point in the galactic plane closest to the sun, 𝑍⊙ is the height of the sun
above the galactic plane, and 𝜃 is measured counter-clockwise looking down from +𝑍.

The model also makes use of coordinates in the frame of the galactic bar, which is
concentric to the galactic frame, but rotated with a pitch angle 𝜑bar and yaw 𝜃bar (clockwise
rotations about 𝑌 and 𝑍, respectively, and performed in that order). The quantities 𝑍⊙,
𝜑bar and 𝜃bar are free parameters in Freudenreich’s model, while 𝑅⊙ is taken to be 8.5 kpc.
Coordinate transformations from heliocentric spherical to Cartesian coordinates in the disk
and bar frames are given in appendix A.

1.2 Sky Survey Data
Before the DIRBE maps can be used to derive the model, they must be processed to
eliminate zodiacal light (sunlight scattered by ice and dust in the plane of the solar system)
and point sources (most of which are bright stars close to the sun).

Freudenreich uses a detailed model of interplanetary dust to eliminate zodiacal light,
leaving acceptably small (but not negligible) residuals. While the 𝑀 band suffers most
from zodiacal light, residuals were ∼ 0.01 MJy sr−1 for all maps (compared to the mean
intensity ∼ 0.15 MJy sr−1 for |𝑏| > 20° in the 𝐿 band). Freudenreich does not describe the
zodiacal light model, but refers to a model proposed by another study [6] which used the
same data from DIRBE.

Point sources pose a problem, as the model cannot hope to predict the location of
randomly distributed local stars, but only the apparently continuous emission of the entire
galactic structure. Point sources therefore need removal from the maps by use of a “de-
starring” method, before they can be used to fit the model. This process is described in
detail in Freudenreich (1996) [2, §2.3], and is not described in this report. The processed
DIRBE images used in this report were prepared and kindly provided by Dylan Paterson
(see acknowledgements). To show the effect of this process, the DIRBE 𝐿 band before and
after zodiacal light and point-source removal is shown in figure 1.1.

An implication of the point source removal is that local stars are effectively deleted,
and their absence requires accounting for before the model is fitted. Freudenreich adds a
parameter 𝐷min

𝜈 for this purpose, which, for a distance 𝑠 < 𝐷min
𝜈 along any line-of-sight in

the model, the luminous density is set to zero. This accounts for the point source removal
while assuming all removed sources exist within a ‘deletion distance’ 𝐷min

𝜈 from the sun [2,
§2.3]. After parameters are fitted to the data, the ‘deletion bubble’ can be removed from
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Figure 1.1: DIRBE maps of the 𝐿 band (3.5 µm) before (above) and after (below) point
source removal. The horizontal axis is longitude, 𝑙, and the vertical is latitude, 𝑏 (under
equal area projection).

the model, as it is not physically relevant.

1.3 Photometry
Freudenreich’s model describes the overall spacial variance of the spectral volume emissivity
of matter throughout the galaxy (at an infrared frequency 𝜈). From the model of spectral
volume emissivity can be acquired a model of the apparent spectral intensity as observed
from Earth, for a given near-infrared band. The total emissivity is modelled as the net
effect of the emissivities of the stellar disk, 𝜀disk

𝜈 ; dust layer, 𝜀dust
𝜈 ; and galactic bar, 𝜀bar

𝜈 . All
three components embody illumination due to stars or heated interstellar gas, and the dust
layer 𝜀dust

𝜈 also acts to incorporate any illumination by diffuse scattering of light [3, §3.2].
(Freudenreich uses the symbol 𝜌 to denote volume emissivity, but in the interest of clarity
this report follows the conventions used throughout Radiative Processes in Astrophysics
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[4], symbolising volume emissivity as 𝜀 and reserving 𝜌 for density.)
The net volume emissivity 𝜀𝜈 has units MJy sr−1 kpc−1, and the observed intensity, 𝐼 ,

has units MJy sr−1 of surface brightness,2 so that the observed intensity is related to the
volume emissivity in a relationship of the form

𝐼𝜈(𝑙, 𝑏) = ∫ d𝑠 𝜀𝜈(𝑙, 𝑏, 𝑠), (1.1)

where the integration is performed over a line-of-sight from the observer to infinity, through
the emissive volume.

However, in reality, extinction occurs as light is partially absorbed and scattered by
dust and intragalactic matter. Freudenreich uses the dust layer to calculate extinction,
encompassed in an absorption term, 𝜏𝜈. The extinction of light per unit distance travelled
is proportional to the dust density 𝜌dust

𝜈 (not the dust emissivity, 𝜀dust
𝜈 ), at that point. Since

occlusion is accumulative over distance, the extinction term for a point (𝑙, 𝑏, 𝑠) as observed
from the solar system is proportional to the total dust density along the line-of-sight from
the observer to that point.

𝜏𝜈(𝑙, 𝑏, 𝑠0) ∝
𝑠0

∫
0

d𝑠 𝜌dust
𝜈 (𝑙, 𝑏, 𝑠) (1.2)

The absorption term is incorporated into equation 1.1 as

𝐼𝜈(𝑙, 𝑏) = ∫ d𝑠 𝜀𝜈(𝑙, 𝑏, 𝑠) 𝑒−𝜏𝜈(𝑙,𝑏,𝑠).

Freudenreich also includes an additive offset term to absorb extragalactic background (and
possibly residual zodiacal light), so that the final form of the intensity at frequency 𝜈 is

𝐼𝜈(𝑙, 𝑏) = 𝛿𝜈 +
∞

∫
0

d𝑠 (𝜀disk
𝜈 + 𝜀dust

𝜈 + 𝜀bar
𝜈 ) 𝑒−𝜏𝜈(𝑠), (1.3)

where 𝛿𝜈 is a free parameter [3, §3.1]. (Because of the point source removal described
in section 1.2, the lower limit of integration may be replaced with 𝐷min

𝜈 —another free
parameter—when comparing with the processed sky maps.)

2The jansky, Jy, measures spectral flux density, or power per unit frequency bandwidth of light per
unit area of aperture. Thus, the units MJy sr−1 are apt to measure the observed ‘brightness’ of a celestial
point, and are the units of the DIRBE data sets.
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2 Parametric Model

The Galactic Disk
Freudenreich’s model of the galactic disk emissivity, 𝜀disk

𝜈 , is a circular cloud that is expo-
nential in 𝑅 and ∝ sech2 in 𝑍, with a warping of the disk above and below the galactic
plane, 𝑍 = 0. The warping is specified by the mean 𝑍-component of the disk, ̄𝑍, modelled
by a cubic polynomial in 𝑢 ≡ 𝑅 − 𝑅𝑤,

̄𝑍(𝑅, 𝜃) = (𝑐1𝑢 + 𝑐2𝑢2 + 𝑐3𝑢3) sin (𝜃 − 𝜃𝑤)
where free parameters are highlighted.1 For 𝑅 < 𝑅𝑤, the disk is made flat (i.e., ̄𝑍 = 0),
and for 𝑅 > 𝑅𝑤, there is a nodal line along 𝜃 = 𝜃𝑤. The disk is warped symmetrically
in opposite directions on opposite sides. The disk is also given an elliptic hole, whose
major axis is shared with the galactic bar. If the eccentricity of the hole is 𝜀, and if
𝑅2

𝐻 = 𝑋′2 + (𝜀𝑌 ′)2, then the hole is modelled by

𝐻(𝑅, 𝜃) = 1 − 𝑒−(𝑅𝐻/𝑂𝑅)𝑂𝑁 , (2.1)

which approaches zero inside the hole and unity outside. Putting these together, using
scale lengths ℎ𝑟 and ℎ𝑧 for the 𝑅 and sech2 dependencies, the full expression for the disk
emissivity is

𝜀disk
𝜈 = 𝜀disk

𝜈,0 𝐻𝑒−𝑅/ℎ𝑟 sech2 (𝑍 − ̄𝑍
ℎ𝑧

) , (2.2)

where 𝜀disk
𝜈,0 is also a free parameter2, representing the maximum value of 𝜀disk

𝜈 at the galactic
centre, if there was no hole. The scale height parameter ℎ𝑧 is free for 𝑅 < 𝑅max, but 0.5 kpc
further out, in order to truncate the disk. [3, §3.1]

The Dust layer
The dust layer (which models the interstellar medium comprised of gas and molecular
dust) is responsible for extinction (absorption and scattering) and emission of diffuse light.
Absorption is proportional to the dust density, 𝜌dust

𝜈 , which is given the same form as the
disk, but with its own parameters, so that

𝜌dust
𝜈 = 𝜎dust

𝜈,0 𝐻𝑑𝑒−𝑅/ℎ𝑑
𝑟 sech (𝑍 − 𝑥𝑑 ̄𝑍

ℎ𝑑𝑧
) , [3, §3.2]. (2.3)

1Hereinafter, free parameter symbols are highlighted on their first appearance.
2Freudenreich names these parameters with a (confusing) functional notation 𝜌disk

𝜈 (0) instead of 𝜀disk
𝜈,0 .
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The warping of the dust layer is a scaled version of the disk warping, by a factor 𝑥𝑑. The
hole, 𝐻𝑑, has the same form as equation 2.1, but with its own dust parameters 𝑂𝑑

𝑅 and
𝑂𝑑

𝑁 .
Freudenreich lets scattered light be accounted for in the emissivity of the dust layer,

which is assumed to be proportional to the product of the dust density 𝜌dust
𝜈 and stellar

emissivity 𝜀disk
𝜈 , so that

𝜀dust
𝜈 = 𝜀dust

𝜈,0 𝐻𝐻𝑑𝑒−𝑅/ℎ𝑟−2𝑅/3ℎ𝑑
𝑟 sech10/3 (|𝑍 − 𝑥𝑑 ̄𝑍|

ℎ𝑑𝑧
) , [3, §3.2].

Dust absorption

Extinction is simulated in the way outlined in equations 1.2 and 1.3, with an appropriate
constant of proportionality. Freudenreich expresses extinction in the 𝐽 band as magnitudes
of extinction per kiloparsec, 𝐴𝐽 , and this quantity is allowed to vary as a free parameter.
For longer wavelengths (𝐾, 𝐿, and 𝑀), a power law in wavelength is used (instead of
introducing superfluous free parameters for extinction at other wavelengths),

𝐴𝜆 = 𝐴𝐽 ( 𝜆
𝜆𝐽

)
−𝛼

, (2.4)

where 𝜆𝐽 = 1.25 µm, and 𝛼 is free. Using this power law, the absorption term can be fully
expressed as

𝜏𝜈(𝑙, 𝑏, 𝑠0) = 𝐴𝜆 ⋅ ln(10)
2.5 ⋅

𝑠0

∫
0

d𝑠 𝜌dust
𝜈 (𝑙, 𝑏, 𝑠)
𝜌dust𝜈 (0) , (2.5)

where 𝜌dust
𝜈 (0) = 𝜌dust

𝜈 (0, 0, 0) is the dust density evaluated at the solar system, and the
ln(10)/2.5 coefficient accounts for the base-ten logarithmic magnitude scale3 used by 𝐴𝐽 ,
converting it to the natural base, 𝑒.

The Galactic Bar

The galactic bar is modelled as a ‘generalised’ ellipsoid, of the form 𝑥𝐶 + 𝑦𝐶 + 𝑧𝐶 = 𝑟𝐶,
where the shape factor 𝐶 is not necessarily two. For a perfect ellipsoid, 𝐶 = 2; for 𝐶 < 2,
the bar is more octahedral; and for 𝐶 > 2, it is more cuboid.

Freudenreich lets the effective radius within the bar, 𝑅𝑠, be a generalised ellipse, with
independent shape factors in the 𝑍′-direction (face-on) and 𝑋′, 𝑌 ′-directions (edge-on)
named 𝐶⟂ and 𝐶∥, respectively.

𝑅𝐶∥
𝑠 = ⎡⎢

⎣
(|𝑋′|

𝑎𝑥
)

𝐶⟂

+ (|𝑌 ′|
𝑎𝑦

)
𝐶⟂

⎤⎥
⎦

𝐶∥/𝐶⟂

+ (|𝑍′|
𝑎𝑧

)
𝐶∥

(2.6)

3This arises from the historical convention of apparent magnitude being defined as 𝑚 ≡ −2.5 log10(𝐼/𝐼0).
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The generalised radius, 𝑅𝑠, is used to model the radial dependence of the bar. If we call
the radial dependence 𝑓 , then the bar model is

𝜀bar
𝜈 = 𝜀bar

𝜈,0 𝑓(𝑅𝑠) 𝑅 ≤ 𝑅end (2.7)
𝜀bar

𝜈 = 𝜀bar
𝜈,0 𝑓(𝑅𝑠) 𝑒−(𝑅−𝑅end)2/ℎend

2 𝑅 > 𝑅end (2.8)

where the model is multiplied by a Gaussian with scale length ℎend for 𝑅 > 𝑅end, in order
to truncate the bar.

Note that, in addition to the free parameters above, there are the pitch 𝜑bar and angle
𝜃bar of the bar, which define the 𝑋′𝑌 ′𝑍′-frame.

2.1 Bar Variations
It is in the choice of the radial dependence of the bar, 𝑓 , that Freudenreich proposes three
alternative functional forms. The model variations are named the S, E and P models, and
their defining radial dependencies are

Model S 𝑓(𝑅𝑠) = sech2 𝑅𝑠 ,
Model E 𝑓(𝑅𝑠) = exp (−𝑅𝑛

𝑠 ) , (2.9)

Model P 𝑓(𝑅𝑠) = [1 + (𝑅𝑠/𝑅𝑐)𝑛]−1 , (2.10)

where each model has its own independently fitted set of parameters.
Freudenreich typeset the model E function as exp(𝑅−𝑛

𝑠 ) in [3, §3.3], however, such a
function is unbounded and does not remotely resemble sech2 𝑅𝑠, so it is easily identified
as an error. In a more recent paper involving the shape of the galactic bar by Simion
(2017) [7, §4.4], a model E function is used with the form exp(−𝑅𝑛

𝑠 /2), which differs
from equation 2.9 only by a constant which is absorbed by other free parameters. This
implies Freudenreich’s error was a typographical mutation of equation 2.9. Freudenreich
also erroneously typeset the model P function as its own reciprocal; 1 + (𝑅𝑠/𝑅𝑐)𝑛. This
particular function is also unbounded and easily identified as a mistake. A comparison of
each radial function is shown in figure 2.1. The P model appears to have a brighter and
flatter bulge, while the model E has the most sharply defined centre.

4 3 2 1 0 1 2 3 4
Rs

0.0

0.5

1.0

1.5

2.0

f(
R s

)

Radial profiles of the bar models
S
E
E *
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P *

Figure 2.1: Plots of the radial dependencies of the bar for the S, E and P models. The E∗

and P∗ models (dotted) are as they are printed in Freudenreich (1998).
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3 Visualising the model

3.1 Method of Computation
To produce an image of the model, the spectral intensity 𝐼𝜈(𝑙, 𝑏) of equation 1.3 must
be evaluated at each pixel. Evaluating 𝐼𝜈(𝑙, 𝑏) can be expensive, because it is a line-of-
sight integral whose integrand, 𝜀Σ

𝜈 𝑒𝜏𝜈(𝑠), depends on the absorption term, 𝜏𝜈(𝑠), which is
itself a line-of-sight integral. Since an image of the (𝑙, 𝑏)-plane typically contains 886 ×
442 ≈ 400 000 pixels, it is desirable to have an efficient computation method for each sky
coordinate.

The method used in this report to compute the intensity at a single pixel at (𝑙, 𝑏) consists
of two steps. The first step is to determine the absorption term, 𝜏𝜈(𝑠), for each 𝑠 in a linearly
increasing sequence {0, 𝑠1, 𝑠2, ..., 𝑠𝑛}, where 𝑠𝑘 = 𝑘 d𝑠 for a small d𝑠. (The number of
samples, 𝑛, is chosen so that 𝑠𝑛 is beyond the outer limit of the model; 𝑠𝑛 ≳ 25 kpc.) This
can be done quickly by taking advantage of the accumulative nature of dust absorption;
the absorption term at a certain distance 𝑠𝑖 is the sum of the dust density at that point
and the absorption term at the previous depth,

𝜏𝜈(𝑠𝑖) = 𝜏𝜈(𝑠𝑖−1) + 𝜌dust
𝜈 (𝑙, 𝑏, 𝑠𝑖) d𝑠,

in the limit d𝑠 → 0. Therefore, beginning at 𝜏𝜈(0) = 0, the absorption term, 𝜏𝜈(𝑠), can
be computed for a set of discrete values along a single line-of-sight while only needing to
evaluate the dust density model 𝜌dust

𝜈 once per sample, summing accumulatively.
The second step is to evaluate the total volume emissivity 𝜀Σ

𝜈 at each point (𝑙, 𝑏, 𝑠𝑖),
for 𝑖 ∈ {0, ..., 𝑛}, using the pre-computed absorption term at each 𝑖.

𝐼𝜈(𝑙, 𝑏) =
𝑛

∑
𝑖=0

𝜀Σ
𝜈 (𝑙, 𝑏, 𝑠𝑖) 𝑒−𝜏(𝑠𝑖) d𝑠

This results in the spectral intensity, 𝐼𝜈(𝑙, 𝑏), without ever having to evaluate a model
function (𝜌dust

𝜈 , 𝜀disk
𝜈 , 𝜀dust

𝜈 , or 𝜀bar
𝜈 ) at the same coordinates more than once. Applying

this to each pixel in a (𝑙, 𝑏)-grid results in an image of the model that can be compared to
DIRBE maps.

This algorithm was implemented in multi-threaded C code and compiled with Freuden-
reich’s fitted parameters, which are listed in table B.1. Most of these parameters are taken
from table 3 of Freudenreich (1998) [3], and some (𝑅𝑤 and the warp coefficients) are listed
in figure 12, while the deletion distances 𝐷min

𝜈 and additive offsets 𝛿𝜈 are given in [3, §5.1].
(Freudenreich (1998) erroneously typesets the dust scale height parameter ℎ𝑑

𝜈 in units of
pc instead of kpc. Using parsecs produces a model that is clearly broken, while kiloparsecs
works as expected.)
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This method essentially applies Riemann summation to evaluate the two line-of-sight
integrals, which is not a technique known for its accuracy. However, since the model does
not contain finely detailed functions, the final intensity 𝐼𝜈(𝑙, 𝑏) converges as 𝑛 increases
sufficiently quickly. With 𝑛 ≈ 500, the produced image differs from a ground truth by no
more than 0.01% at any pixel, and the program takes ∼ 8 s to execute on a laptop. A
simple way to improve the efficiency of this method (which was not used in this report)
would be to use a non-linear set of distances 𝑠𝑖. By decreasing d𝑠 where the model is more
detailed, the quality of the Riemann sum in those regions is improved; and by increasing
d𝑠 where the model is more flat, there is negligible increase in error. Letting d𝑠 vary with
the gradient of the model in this way lets the total number of samples be reduced without
loosing numerical precision, in turn improving efficiency.

3.2 Comparison & Residuals
Freudenreich’s models can not be directly compared to the unprocessed DIRBE maps,
because the presence of point sources in observed data unfairly disagrees with the contin-
uous model. Rather, a comparison is drawn between the model and the de-starred DIRBE
maps (described in section 1.2), after they have been offset to compensate for the deletion
of nearby stars. Recall that the de-starring process was assumed to affect the DIRBE
maps as if point sources within the deletion radius 𝐷min

𝜈 were eliminated. By computing
the fitted model only within the deletion radius, 0 ≤ 𝑠 < 𝐷min

𝜈 , the offset required to
correct the de-starred DIRBE maps is acquired. After adding this offset to the DIRBE
maps, Freudenreich’s models may be directly compared to them, and fair residuals may be
computed.

The S, E and P models were computed in the 𝐿 band by the method described in
section 3.1, and their contours are shown in figure 3.1, superimposed over the (calibrated)
DIRBE 𝐿 band. In an effort to recreate figure 3 in Freudenreich (1998) (replicated here in
figure 3.2), the same contour levels were used. (Freudenreich omitted the value of the fifth
contour—0.37 MJy sr−1—in the caption of figure 3 in [3], but its omission is easily noticed
if the provided contour levels are plotted in log-space; they form a line with a definite gap
where the fifth contour level was missed.)

While many features are shared between the two figures, the resemblance is not striking.
Freudenreich’s figure (3.2) displays a superior agreement between the model and data, while
figure 3.1 exhibits larger disagreement, especially for the median contours, 10° < |𝑏| < 30°.
The quality of fit along the galactic equator 𝑏 = 0° closely resembles Freudenreich, and the
fit is strong around the bulge (≤ 10° radius about the galactic centre). At low latitudes
(𝑏 ≈ −60°), there seems to be a systematic disagreement that is not found in Freudenreich,
in which the data contours are too low for positive longitudes and too high for negative
longitudes. This error, proportional to sin 𝑙 may be due to residual zodiacal light.

However, if the DIRBE maps are ignored, the model S itself is identical to Freudenre-
ich’s, as can be seen by the model contours in figures 3.1–3.2. This implies that most of
the discrepancy is due to differences in how the DIRBE data was processed, not how the
model S was calculated. Freudenreich (1998) does not show the model E or P contours
(since the model S is the preferred model [3, §5.4]), but they are included in figure 3.1.
The S and E models are nearly identical, even in the bulge region where any differences
in bulge shape should be apparent. The P model differs the most, and is the model with
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the worst fit [3, §4]. The P model is most similar at low latitudes and high longitudes
(𝑏 ≈ 0° ∧ |𝑙| < 45°), but is dimmer at high latitudes |𝑏| > 20°. Near the bulge, the P
model is brighter for small longitudes 𝑙 ≈ 0° and dimmer for low latitudes 𝑙 ≈ 0°.

Relative residuals were computed for the model S as |data − model|/data with the
calibrated DIRBE 𝐿 band, and are shown in figure 3.3. Immediately noticeable is the
proportionality of the error with latitude, |𝑏|. There is also a significantly higher average
error within the ecliptic band, outlined by the black contours at |𝛽| = ±15°, inferring
that zodiacal light was not completely eliminated from the DIRBE 𝐿 band. Regions of
extremely large error (> 40%) were identified1 as major point sources which Freudenreich
simply masked out during model fitting.

1Sources were identified with the help of the Aladin Sky Atlas developed at CDS, Strasbourg Observa-
tory, France, which is freely available at http://aladin.u-strasbg.fr.
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Figure 3.1: Contour map of the DIRBE 𝐿 band after point source removal (white) with
the contours of the S (green) and E (red) and P (cyan) models superimposed. Contour
levels are 0.09, 0.13, 0.18, 0.26, 0.37, 0.52, 0.73, 1.04, 1.47, 2.08, 2.95, 4.17, 5.91 and
8.36 MJy sr−1.

Figure 3.2: Freudenreich (1998) figure 3, showing the model S contours superimposed
against processed data in the 𝐿 band. Contour levels are as in figure 3.1. The thick
contour shows the mask used while fitting the model.
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Figure 3.3: Model S residuals in the 𝐿 band, showing the magnitude of the difference
relative to the data. The three greatest residual spots are identified as bright sky objects;
the Large and Small Magellanic Clouds (LMC & SMC), the Orion Nebula (M42) and the
bright star Antares (𝛼 Sco).
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4 Conclusions

Freudenreich’s model was used to produce an intensity map in the 𝐿 band that was able
to be compared to processed DIRBE observations. While the S model was successfully
replicated from Freudenreich (1998), the DIRBE 𝐿 band was not processed an identical
way. There was evidence of significant zodiacal light residue in the processed DIRBE 𝐿
band, which caused disagreement between the model and the data.

The parametric model itself and the method of rendering it were explained in more
detail than in Freudenreich (1998). The functional forms of the radial dependencies of
the E and P models listed in Freudenreich (1998) were corrected with reference to Simion
(2017) [7]. Other mistakes, such as the omitted contour in Freudenreich (1998) figure 3
and the incorrect unit for the dust scale height parameter, ℎ𝑑

𝑧 , were corrected.
For these reasons, this report will be useful to anyone who is studying the galactic

structure and intends to interpret Freudenreich’s method, model and results.
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A Coordinate Transformations

If 𝑍⊙ is nonzero, which is suggested by observation, then the galactic plane defined by
𝑏 = 0° is not the same as the plane defined by 𝑍 = 0. Instead, the two planes intersect along
the 𝑌 -axis at an angle 𝜑⊙ = arctan(𝑍⊙/𝑅⊙). This rotation, along with the translation
between the heliocentric frame and galactic frame, define a coordinate transformation. The
transformation from galactic (𝑙, 𝑏, 𝑠) coordinates to galactocentric (𝑋, 𝑌 , 𝑍) coordinates is
therefore an affine transformation which be decomposed into the following intermediates.
After transforming from spherical to Cartesian heliocentric coordinates,

𝑋⊙ = 𝑠 cos (𝑙) cos (𝑏)
𝑌⊙ = 𝑠 sin (𝑙) cos (𝑏)
𝑍⊙ = 𝑠 sin (𝑏)

the frame origin is translated to the galactic centre,

𝑋′
⊙ = 𝑋⊙ − 𝐷⊙

𝑌 ′
⊙ = 𝑌⊙

𝑍′
⊙ = 𝑍⊙

where 𝐷⊙ is the distance between the sun and galactic centre. Finally, the coordinates
undergo a clockwise rotation of 𝜑⊙ about the +𝑌 -axis, aligning the 𝑋𝑌 -plane with the
galactic disk.

⎡
⎢
⎣

𝑋
𝑌
𝑍

⎤
⎥
⎦

= ⎡
⎢
⎣

cos 𝜑⊙ 0 sin 𝜑⊙
0 1 0

− sin 𝜑⊙ 0 cos 𝜑⊙

⎤
⎥
⎦

⎡
⎢
⎣

𝑋′
⊙

𝑌 ′
⊙

𝑍′
⊙

⎤
⎥
⎦

Furthermore, the bar frame coordinates ⃗𝑟′ = (𝑋′, 𝑌 ′, 𝑍′) are a rotation of the galac-
tocentric coordinates ⃗𝑟 = (𝑋, 𝑌 , 𝑍). The transformation ⃗𝑟 → ⃗𝑟′ can be expressed as the
composition of two orthogonal rotations, ⃗𝑟′ = 𝚯𝚽 ⃗𝑟. The first rotation, 𝚽, is an anti-
clockwise rotation of 𝜑bar about the +𝑌 -axis, incorporating the pitch of the bar from the
galactic plane. The second rotation, 𝚯, is an anticlockwise rotation of 𝜃bar about +𝑍,
aligning the 𝑋′-axis with the major axis of the ellipsoidal bar.

⎡
⎢
⎣

𝑋′

𝑌 ′

𝑍′
⎤
⎥
⎦

= ⎡
⎢
⎣

cos 𝜃bar − sin 𝜃bar 0
sin 𝜃bar cos 𝜃bar 0

0 0 1
⎤
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝚯

⎡
⎢
⎣

cos 𝜑bar 0 − sin 𝜑bar
0 1 0

sin 𝜑bar 0 cos 𝜑bar

⎤
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝚽

⎡
⎢
⎣

𝑋
𝑌
𝑍

⎤
⎥
⎦
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B Parameters

Parameter Unit Model S Model E Model P
Sun coordinates 𝑅⊙ kpc 8.5 = =

= 𝑍⊙ pc 16.12 16.50 15.66
Deletion distances 𝐷min

𝐽 pc 470 = =

= 𝐷min
𝐾 pc 520 = =

= 𝐷min
𝐿 , 𝐷min

𝑀 pc 560 = =
Additive offsets 𝛿𝐽 kJy sr−1 84 = =

= 𝛿𝐾 kJy sr−1 64 = =

= 𝛿𝐿 kJy sr−1 31 = =

= 𝛿𝑀 kJy sr−1 14 = =
Disk parameters

Disk scale length ℎ𝑟 kpc 2.6009 2.601 2.567
Disk scale height ℎ𝑧 kpc 0.3420 0.3466 0.3440
Disk radius 𝑅max kpc 12.35 12.45 12.52
Nodal line angle 𝜃𝑤 ° +0.40 +0.83 −0.07
Disk emissivities 𝜌disk

𝐽,0 MJy sr−1 kpc−1 8.115 8.141 8.725

= 𝜌disk
𝐾,0 MJy sr−1 kpc−1 6.707 6.740 7.000

= 𝜌disk
𝐿,0 MJy sr−1 kpc−1 3.539 3.478 3.637

= 𝜌disk
𝑀,0 MJy sr−1 kpc−1 1.759 1.724 1.796

Disk hole radius 𝑂𝑅 kpc 2.912 2.910 3.294
Disk hole shape 𝑂𝑁 1 1.705 1.572 1.585
Hole eccentricity 𝜀 1 0.822 0.905 0.910
Warp inner radius 𝑅𝑤 kpc 4.34 4.17 4.47
Warp coefficients 𝑐1 1 × 10−3 +11.18 +12.09 +5.64

= 𝑐2 kpc−1 × 10−3 −1.92 −1.97 −2.27

= 𝑐3 kpc−2 × 10−3 +0.795 +0.679 +0.993
Bar parameters

Bar tilt angle 𝜃bar ° +13.98 +9.48 +13.51
Bar pitch angle 𝜑bar ° −0.05 +0.07 +0.02
Bar sizes 𝑎𝑥 kpc 1.686 1.878 1.806

= 𝑎𝑦 kpc .6429 .6512 .6418

= 𝑎𝑧 kpc .4420 .4302 .4313
Bar cutoff radius 𝑅end kpc 3.139 3.542 2.725
Bar falloff scale length ℎend kpc 0.469 0.545 0.875
Bar face-on shape 𝐶⟂ 1 1.588 1.597 1.655
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Bar edge-on shape 𝐶∥ 1 3.466 3.418 2.976
Bar emissivities 𝜌bar

𝐽,0 MJy sr−1 kpc−1 10.42 10.36 11.77

= 𝜌bar
𝐾,0 MJy sr−1 kpc−1 8.769 8.707 9.400

= 𝜌bar
𝐿,0 MJy sr−1 kpc−1 4.545 4.465 4.848

= 𝜌bar
𝑀,0 MJy sr−1 kpc−1 2.241 2.180 2.387

Dust parameters
Dust scale length ℎ𝑑

𝑟 kpc 3.020 3.320 3.376
Dust scale height ℎ𝑑

𝑧 kpc (not pc) 0.205 0.2019 0.182
Dust warp multiplier 𝑥𝑑 1 1.811 1.765 1.749
Local extinction factor 𝐴𝐽 J mag kpc−1 0.0446 0.0558 0.0618
Dust hole radius 𝑂𝑑

𝑅 kpc 2.684 2.222 2.051
Dust hole shape 𝑂𝑑

𝑁 1 2.182 2.116 2.466
Dust emissivities 𝜌dust

𝐽,0 MJy sr−1 kpc−1 4.681 4.699 4.795

= 𝜌dust
𝐾,0 MJy sr−1 kpc−1 1.146 1.229 1.145

= 𝜌dust
𝐿,0 MJy sr−1 kpc−1 2.196 2.320 2.455

= 𝜌dust
𝑀,0 MJy sr−1 kpc−1 3.185 3.139 3.559

Table B.1: Model parameters from Freudenreich (1998).
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C Code

Code that was used to compute the model and produce figures 3.1 and 3.3 is included in
this appendix. Code was compiled with clang -fopenmp -l cfitsio to enable multi-
threading and link the open source cfitsio library (available from https://heasarc.
gsfc.nasa.gov/fitsio/), which is used for writing .fits files.

1 /* dirbe.c - main file
2 * Renders intensity map of the galactic bar and disk from
3 * model and produces a FITS file with appropriate header.
4 * Written for PHYS391 by Joseph Wilson, 2018.
5 */
6
7 /* Model Selection */
8 #define MODEL 'P'
9 #define BAND LBAND

10
11 /* Image resolution */
12 #define LPORTION 1 // set both to 1 for full image
13 #define BPORTION 1
14
15 #define LSIZE (int)(886*LPORTION)
16 #define BSIZE (int)(442*BPORTION)
17 #define SSIZE 300
18
19 /* Includes */
20 #include "model.h"
21 #include "ndarray.h"
22 #include "savefits.h"
23
24 real l_lim[2] = {deg2rad(180*LPORTION), deg2rad(-180*LPORTION)};
25 real y_lim[2] = {-BPORTION, BPORTION};
26
27 int main(int argc, char const *argv[])
28 {
29 if (argc < 2) {
30 printf("usage: %s output.fits\n", argv[0]);
31 exit(0);
32 }
33
34 init_model(); // compute derived parameters
35
36 real L[LSIZE], B[BSIZE], S[SSIZE];
37 real dl = linspace(l_lim[0], l_lim[1], LSIZE, L);
38 real ds = linspace(0, 3*ʹD_sun, SSIZE, S);
39
40 // create equal-area B axis, sin(b) = y (CEA projection)
41 real y[BSIZE];
42 real dy = linspace(y_lim[0], y_lim[1], BSIZE, y);
43 for (unsigned int i = 0; i < BSIZE; ++i) B[i] = asin(y[i]);
44
45
46 /* Create coordinate mesh */
47 printf("computing coordinates...\n");
48
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49 struct ndarray coords;
50 coords.ndim = 4;
51 coords.dims = (unsigned int[]){
52 NCOORDS, SSIZE, LSIZE, BSIZE}; // note axis order
53 ndarray_new(&coords);
54
55 #pragma omp parallel for // enable multithreading
56 for (unsigned long p = 0; p < coords.size; p += NCOORDS) {
57 unsigned int indices[4]; // declaration inside for loop means per thread
58 ndarray_indices(&coords, p, indices);
59 lbs_to_xyzXYZ(L[indices[2]], B[indices[3]], S[indices[1]],
60 &coords.data[p]);
61 }
62
63
64 /* Compute absorption factor */
65 printf("computing τ(s)...\n");
66
67 real sun_coords[NCOORDS];
68 lbs_to_xyzXYZ(0, 0, 0, /*out:*/sun_coords);
69 real σ_dust_0 = σ_dust(sun_coords);
70
71 real A_λ = ʹA_J*pow(WAVELENGTH[BAND]/WAVELENGTH[JBAND], -ʹα);
72 real coeff = A_λ/2.5*log(10)/σ_dust_0;
73
74 struct ndarray τ;
75 τ.ndim = 3;
76 τ.dims = (unsigned int[]){SSIZE, LSIZE, BSIZE};
77 ndarray_new(&τ);
78
79 // sum σ_dust along each line of sight, creating τ mesh
80 #pragma omp parallel for // enable multithreading
81 for (unsigned long p = 0; p < τ.size; p += SSIZE) { // traverse volume in (s,l,b) order
82 real σ = 0; // (0,l,s) is beginning s-line
83 for (unsigned int k = 0; k < SSIZE; ++k) {
84 σ += coeff*σ_dust(&coords.data[(p + k)*NCOORDS])*ds;
85 τ.data[p + k] = σ;
86 }
87 }
88
89 /* Integrate model
90 * I_ν(l, b) = δ_ν + ∫ ds (Σ ρ_ν) exp(-τ(s))
91 */
92 printf("integrating model...\n");
93
94 struct ndarray I;
95 I.ndim = 2;
96 I.dims = (unsigned int[]){LSIZE, BSIZE};
97 ndarray_new(&I);
98
99 #pragma omp parallel for // enable multithreading

100 for (unsigned long p = 0; p < I.size; ++p) { // traverse lb-plane
101 I.data[p] = ʹδ_ν[BAND];
102 unsigned long p_3d = SSIZE*p;
103 while (++p_3d%SSIZE > 0) { // traverse s-line
104 real ρ = ρ_sum(&coords.data[NCOORDS*p_3d]);
105 I.data[p] += ρ*exp(-τ.data[p_3d])*ds;
106 }
107 }
108
109 /* Export FITS image */
110
111 const char *filename = argv[1];
112 save_image(filename, FLOAT_IMG, TDOUBLE, &I);
113
114 float refx = (LSIZE + 1.0)/2;
115 float refy = (BSIZE + 1.0)/2;
116 float lonstep = rad2deg(l_lim[1] - l_lim[0])/LSIZE;
117 float latstep = rad2deg(asin((y_lim[1] - y_lim[0])/BSIZE));
118
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119 add_card("CRPIX1", TFLOAT, &refx, "ref pixel x");
120 add_card("CRPIX2", TFLOAT, &refy, "ref pixel y");
121 add_card("CTYPE1", TSTRING, &"GLON-CEA", "galactic lon, l (equal area)");
122 add_card("CTYPE2", TSTRING, &"GLAT-CEA", "galactic lan, b (equal area)");
123 add_card("CUNIT1", TSTRING, &"deg", "unit of galactic lon");
124 add_card("CUNIT2", TSTRING, &"deg", "unit of galactic lat");
125 add_card("CDELT1", TFLOAT, &lonstep, "lon step size");
126 add_card("CDELT2", TFLOAT, &latstep, "lat step size");
127 add_card("CREATOR", TSTRING, &"Joseph Wilson @ UC, PHYS391 2017-2018.", "");
128
129 char comment[80];
130 sprintf(comment, "model: %c, band: %c, ssize: %d", MODEL, "JKLM"[BAND], SSIZE);
131 add_comment(comment);
132
133 close_image();
134 free(coords.data);
135 free(τ.data);
136 free(I.data);
137
138 printf("done.\n");
139 return 0;
140 }

1 /* ndarray.h
2 * A very simple implementation of n-dimensional arrays,
3 * which are stored as normal 1D arrays contained within
4 * a struct with information about dimensionality.
5 * Written for PHYS391 by Joseph Wilson, 2018.
6 */
7
8 #ifndef NDARRAY_H
9 #define NDARRAY_H

10
11 #include <stdlib.h>
12 #include <stdio.h>
13 #include <assert.h>
14
15 struct ndarray {
16 real *data; // 1D array of data
17 unsigned int ndim; // number of dimensions
18 unsigned int *dims; // size along each dimension
19 unsigned long size; // total number of array elements
20 };
21
22 void ndarray_new(struct ndarray *a)
23 { /* Given an ndarray with initialised .ndim and .dim,
24 * compute .size and allocate memory for .data.
25 */
26 a->size = 1;
27 for (unsigned int i = 0; i < a->ndim; ++i) a->size *= a->dims[i];
28 a->data = (real *)malloc(a->size*sizeof(real));
29 }
30 long ndarray_index(struct ndarray *a, unsigned int coords[])
31 { /* Given indices of an element along each dimension of
32 * an ndarray, return the real index of the element
33 * as stored in the internal .data array.
34 */
35 unsigned int i = a->ndim - 1;
36 unsigned long p = coords[i];
37 while (i--) p = p*a->dims[i] + coords[i];
38 return p;
39 }
40 void ndarray_indices(struct ndarray *a, unsigned long p,
41 unsigned int coords[]) // output
42 { /* Given the real index of an element in the .data array,
43 * set the indices of the element along each dimension.
44 */
45 for (unsigned int i = 0; i < a->ndim; ++i) {
46 coords[i] = p%a->dims[i];
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47 p /= a->dims[i];
48 }
49 }
50
51
52 typedef unsigned int dim;
53 void matmul(dim n, dim l, dim m,
54 real A[n][l], real B[l][m],
55 real C[n][m]) // output
56 { /* In-place matrix multiplication.
57 * A(n×l) × B(l×m) → C(n×m)
58 */
59 for (int i = 0; i < n; ++i) {
60 for (int j = 0; j < m; ++j) {
61 C[i][j] = 0;
62 for (int k = 0; k < l; ++k) {
63 C[i][j] += A[i][k]*B[k][j];
64 }
65 }
66 }
67 }
68
69 #endif /* NDARRAY_H */

1 /* savefits.h
2 * Utilities for writing fits files from 2D arrays.
3 * Written for PHYS391 by Joseph Wilson, 2018.
4 */
5
6 #include <string.h>
7 #include <stdio.h>
8 #include <fitsio.h>
9

10 #ifndef SAVEFITS_H
11 #define SAVEFITS_H
12
13 void print_error(int status)
14 {
15 fits_report_error(stderr, status);
16 exit(status);
17 }
18
19 fitsfile *fptr;
20 int status = 0;
21
22 fitsfile *save_image(const char filename[], int bitpix, int datatype, struct ndarray *image)
23 { /* Save a 2D array as a fits file.
24 */
25
26
27 /* Create new file */
28 printf("exporting image to '%s'...\n", filename);
29
30 remove(filename);
31 if (fits_create_file(&fptr, filename, &status))
32 print_error(status);
33
34 /* Create image */
35 // convert dims from int[] to long[].
36 long dimsl[image->ndim];
37 for (int i = 0; i < image->ndim; ++i) dimsl[i] = image->dims[i];
38 if (fits_create_img(fptr, bitpix, image->ndim, dimsl, &status))
39 print_error(status);
40
41 /* Write array */
42 if (fits_write_img(fptr, datatype, 1, image->size, image->data, &status))
43 print_error(status);
44
45 return fptr;
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46 }
47
48 void add_card(char label[], int datatype, void *data, char comment[])
49 {
50 if (fits_update_key(fptr, datatype, label, data, comment, &status))
51 print_error(status);
52 }
53
54 void add_comment(char comment[])
55 {
56 if (fits_write_comment(fptr, comment, &status))
57 print_error(status);
58 }
59
60 void close_image()
61 { /* Close previously created fits file.
62 */
63 if (fits_close_file(fptr, &status))
64 print_error(status);
65 }
66
67 #endif /* SAVEFITS_H */

1 /* model.h
2 * Header file that invokes the correct parameter set,
3 * define global constants and includes utilities.
4 * Written for PHYS391 by Joseph Wilson, 2018.
5 */
6
7 #include <math.h>
8
9 // type definitions for semantic purposes

10 typedef double real;
11 typedef real kpc;
12 typedef real rad;
13 typedef real mat3[3][3];
14
15 // constants
16 #define JBAND 0
17 #define KBAND 1
18 #define LBAND 2
19 #define MBAND 3
20
21 real WAVELENGTH[] = { // μm
22 1.25, // J band
23 2.2, // K band
24 3.5, // L band
25 4.9, // M band
26 };
27
28 #define NCOORDS 6
29
30 // angle unit conversions
31 #define deg2rad(deg) ((deg)*M_PI/180)
32 #define rad2deg(rad) ((rad)/M_PI*180)
33
34 // include parameters for current model
35 #ifndef MODEL
36 #error Model not specified
37 #elif MODEL == 'S'
38 #include "params_S.h"
39 #elif MODEL == 'E'
40 #include "params_E.h"
41 #elif MODEL == 'P'
42 #include "params_P.h"
43 #else
44 #error "Unknown model"
45 #endif
46
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47 /* Global parameters */
48
49 // from Freudenreich 1998 §5.1
50
51 kpc ʹD_min[] = {
52 .470, // J band
53 .520, // K band
54 .560, // L band
55 .560, // M band
56 };
57
58 real/*MJy/sr*/ ʹδ_ν[] = {
59 .084, // J band
60 .064, // K band
61 .031, // L band
62 .014, // M band
63 };
64
65
66 // include headers that depend on parameters
67 #include "params_derived.h"
68 #include "model_functions.h"
69 #include "coords.h"

1 /* coords.h
2 * Subroutines for transforming between spherical galactic
3 * coordinates and galactocentric Cartesian coordinates.
4 * Written for PHYS391 by Joseph Wilson, 2018.
5 */
6
7 #ifndef COORDS_H
8 #define COORDS_H
9

10 #include <stdio.h>
11 #include <math.h>
12
13 #include "ndarray.h"
14
15 void lbs_to_xyz(real l, real b, real s,
16 real *x, real *y, real *z) // output
17 { /* In-place spherical to Cartesian coordinate transform.
18 */
19 real c = cos(b);
20 *x = s*c*cos(l);
21 *y = s*c*sin(l);
22 *z = s*sin(b);
23 }
24
25 void lbs_to_xyzXYZ(real l, real b, real s,
26 real xyzXYZ[]) // output
27 { /* In-place conversion from spherical galactic
28 coordinates (l, b, s) into Cartesian coordinates
29 in the galactic disk frame (x, y, z) and
30 galactic bar frame (X, Y, Z).
31 */
32
33 real *x = &xyzXYZ[0], *y = &xyzXYZ[1], *z = &xyzXYZ[2],
34 *X = &xyzXYZ[3], *Y = &xyzXYZ[4], *Z = &xyzXYZ[5];
35
36 // Transform from spherical to Cartesian coordinates.
37 lbs_to_xyz(l, b, s, x, y, z);
38
39 // Translate heliocentric frame to galactocentre.
40 *x -= ʹD_sun;
41
42 // Perform rotations into disk and bar frames.
43 matmul(3, 3, 3, ʹSUN_to_DISK_rot, *x, *y, *z, x, y, z);
44 matmul(3, 3, 3, ʹDISK_to_BAR_rot, *x, *y, *z, X, Y, Z);
45 }
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46
47 void DISKxyz_to_BARxyz(real xyz[],
48 real XYZ[]) // output
49 {
50 matmul(3, 3, 3, ʹDISK_to_BAR_rot,
51 xyz[0], xyz[1], xyz[2],
52 &XYZ[0], &XYZ[1], &XYZ[2]);
53 }
54
55 #endif /* COORDS_H */

1 /* params_derived.h
2 * Header file that contains derived parameters of the model,
3 * or other constants that are determined at run-time.
4 * Written for PHYS391 by Joseph Wilson, 2018.
5 */
6
7 #include <math.h>
8 #include <string.h> // memcpy
9

10 #include "matrix.h"
11
12 kpc ʹD_sun;
13 rad ʹφ_sun;
14
15
16 // Rotation matrices
17 mat3 ʹθ_bar_rot;
18 mat3 ʹφ_bar_rot;
19 mat3 ʹSUN_to_DISK_rot;
20 mat3 ʹDISK_to_BAR_rot;
21
22 void init_model()
23 { /* Compute dependent derived quantities
24 */
25 ʹD_sun = hypot(ʹR_sun, ʹZ_sun);
26 ʹφ_sun = atan2(ʹZ_sun, ʹR_sun);
27 // ʹφ_sun = 0;
28
29 double c, s;
30
31 // Set sun-to-disk frame rotation matrix;
32 // a counter-clockwise rotation about y
33 c = cos(ʹφ_sun), s = sin(ʹφ_sun);
34 memcpy(ʹSUN_to_DISK_rot, (mat3){
35 { c, 0, s},
36 { 0, 1, 0},
37 {-s, 0, c},
38 }, sizeof(mat3));
39
40
41 // Set bar angle rotation matrix;
42 // a clockwise rotation about z
43 c = cos(ʹθ_bar), s = sin(ʹθ_bar);
44 memcpy(ʹθ_bar_rot, (mat3){
45 { c,-s, 0},
46 { s, c, 0},
47 { 0, 0, 1},
48 }, sizeof(mat3));
49
50 // Set bar pitch rotation matrix;
51 // a counter-clockwise rotation about y
52 c = cos(ʹφ_bar), s = sin(ʹφ_bar);
53 memcpy(ʹφ_bar_rot, (mat3){
54 { c, 0,-s},
55 { 0, 1, 0},
56 { s, 0, c},
57 }, sizeof(mat3));
58
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59 // Compose bar rotations into single matrix
60 matmul(3, 3, 3, ʹθ_bar_rot, ʹφ_bar_rot, ʹDISK_to_BAR_rot);
61 }

1 /* model_functions.h
2 * Header file containing the parametric model functions.
3 * Written for PHYS391 by Joseph Wilson, 2018.
4 */
5
6 #if MODEL == 'S'
7 #define RADIAL pow(cosh(R_s), -2)
8 #elif MODEL == 'E'
9 #define RADIAL exp(-pow(R_s, ʹn))

10 #elif MODEL == 'P'
11 #define RADIAL 1/(1 + pow(R_s/ʹR_c, ʹn))
12 #endif
13
14 real ρ_bar(real coords[6])
15 { /* Volume emissivity of the bar.
16 */
17 real X = coords[0], Y = coords[1];
18 real Xʹ = coords[3], Yʹ = coords[4], Zʹ = coords[5];
19 real R = hypot(X, Y);
20
21 // ellipsoid bar
22 real R_s = pow(fabs(Xʹ)/ʹa_x, ʹC_xy) + pow(fabs(Yʹ)/ʹa_y, ʹC_xy);
23 R_s = pow(R_s, ʹC_z/ʹC_xy) + pow(fabs(Zʹ/ʹa_z), ʹC_z);
24 R_s = pow(R_s, 1/ʹC_z);
25
26 // radial dependence
27 real radial = RADIAL;
28
29 // radial falloff
30 real falloff = (R <= ʹR_end) ? 1 : exp(-pow((R - ʹR_end)/ʹh_end, 2));
31
32 return ʹρ0_bar[BAND]*radial*falloff;
33 }
34
35 real ρ_disk(real coords[6])
36 { /* Volume emissivity of the disk.
37 */
38 real X = coords[0], Y = coords[1], Z = coords[2];
39 real Xʹ = coords[3], Yʹ = coords[4];
40 real R = hypot(X, Y);
41 real θ = atan2(Y, X);
42
43 // disk hole
44 real R_H = hypot(Xʹ, ʹε*Yʹ);
45 real hole = 1 - exp(-pow(R_H/ʹO_R, ʹO_N));
46
47 // radial falloff
48 real h_r = (R <= ʹR_max) ? ʹh_r : ʹh_r_max;
49 real falloff = exp(-R/h_r);
50
51 // disk warping
52 real u = R - ʹR_w;
53 real Z_bar = (R <= ʹR_w) ? 0 : ((ʹc[0] + (ʹc[1] + ʹc[2]*u)*u)*u)*sin(θ - ʹθ_w);
54 real warp = pow(cosh((Z - Z_bar)/ʹh_z), -2);
55
56 return ʹρ0_disk[BAND]*hole*falloff*warp;
57 }
58
59
60 real σ_dust(real coords[6])
61 { /* Absorption of dust layer.
62 */
63 real X = coords[0], Y = coords[1], Z = coords[2];
64 real Xʹ = coords[3], Yʹ = coords[4];
65 real R = hypot(X, Y);
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66 real θ = atan2(Y, X);
67
68 // disk hole
69 real R_H = hypot(Xʹ, ʹε*Yʹ);
70 real hole = 1 - exp(-pow(R_H/ʹOd_R, ʹOd_N));
71
72 // radial falloff
73 real h_r = (R <= ʹR_max) ? ʹhd_r : ʹh_r_max;
74 real falloff = exp(-R/h_r);
75
76 // disk warping
77 real u = R - ʹR_w;
78 real Z_bar = (R <= ʹR_w) ? 0 : ((ʹc[0] + (ʹc[1] + ʹc[2]*u)*u)*u)*sin(θ - ʹθ_w);
79 real warp = pow(cosh((Z - ʹxd*Z_bar)/ʹhd_z), -2);
80
81 return ʹρ0_dust[BAND]*hole*falloff*warp;
82 }
83
84 real ρ_dust(real coords[6])
85 { /* Volume emissivity of dust layer.
86 */
87 real X = coords[0], Y = coords[1], Z = coords[2];
88 real Xʹ = coords[3], Yʹ = coords[4];
89 real R = hypot(X, Y);
90 real θ = atan2(Y, X);
91
92 // disk and dust holes
93 real R_H = hypot(Xʹ, ʹε*Yʹ);
94 real disk_hole = 1 - exp(-pow(R_H/ʹO_R, ʹO_N));
95 real dust_hole = 1 - exp(-pow(R_H/ʹOd_R, ʹOd_N));
96
97 // disk and dust falloff
98 real falloff = exp(-R/ʹh_r - 2*R/(3*ʹhd_r));
99

100 // disk warping
101 real u = R - ʹR_w;
102 real Z_bar = (R <= ʹR_w) ? 0 : ((ʹc[0] + (ʹc[1] + ʹc[2]*u)*u)*u)*sin(θ - ʹθ_w);
103 real warp = pow(cosh((Z - ʹxd*Z_bar)/ʹhd_z), -10.0/3.0);
104
105 return ʹρ0_dust[BAND]*dust_hole*disk_hole*falloff*warp;
106 }

1 /* params_S.h
2 * Header file containing the fitted parameter values from
3 * Freudenreich (1998), table 3, model S (minimal mask).
4 */
5
6 // Position of sun relative to galactic centre.
7 kpc ʹR_sun = 8.5;
8 kpc ʹZ_sun = 16.12e-3;
9

10 /* CHECK THIS: θ = ±13.79°? see params */
11 rad ʹθ_bar = deg2rad(+13.98); // bar tilt angle
12
13 /*
14 * DISK PARAMETERS
15 */
16
17 kpc ʹh_r = 2.6009; // disk scale length
18 kpc ʹh_z = 0.3420; // disk scale height
19
20 kpc ʹR_max = 12.35; // disk radius
21 kpc ʹh_r_max = 0.5; // disk scale truncation value
22
23 rad ʹθ_w = deg2rad(0.40); // warp line of nodes
24
25 real ʹρ0_disk[] = { // central disk emissivities
26 8.115, // J band
27 6.707, // K band
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28 3.539, // L band
29 1.759, // M band
30 };
31
32 kpc ʹO_R = 2.912; // disk-hole radius
33 real ʹO_N = 1.705; // disk-hole power
34
35 real ʹε = 0.822; // hole axis ratio
36
37 // From Freudenreich 1998 fig. 12, (S).
38 kpc ʹR_w = 4.34; // warp inner radius
39 real ʹc[] = { // warp coefficients
40 +0.01118,
41 -0.00192,
42 +.000795,
43 };
44
45 /*
46 * BAR PARAMETERS
47 */
48
49 rad ʹφ_bar = deg2rad(-0.05); // bar pitch angle
50
51 kpc ʹa_x = 1.686; // bar size
52 kpc ʹa_y = .6429;
53 kpc ʹa_z = .4420;
54
55 kpc ʹR_end = 3.139; // bar cutoff radius
56 kpc ʹh_end = 0.469; // bar cutoff scale length
57
58 real ʹC_xy = 1.588; // bar shape
59 real ʹC_z = 3.466;
60
61
62 real ʹρ0_bar[] = { // central bar emissivities
63 10.42, // J band
64 8.769, // K band
65 4.545, // L band
66 2.241, // M band
67 };
68
69 //
70 //
71
72 /*
73 * DUST PARAMETERS
74 */
75
76 kpc ʹhd_r = 3.020; // dust scale length
77
78 kpc ʹhd_z = 0.205; // dust scale height
79
80 // 0.205 pc = 0.205e-3
81
82 real ʹxd = 1.811; // dust warp factor
83
84 real ʹA_J = 0.0898; // local extinction factor
85 real ʹα = 1.987; // extinction index
86
87 kpc ʹOd_R = 2.684; // dust hole radius
88 real ʹOd_N = 2.182; // dust hole power
89
90 real ʹρ0_dust[] = { // dust central emissivities
91 4.681, // J band
92 1.146, // K band
93 2.196, // L band
94 3.185, // M band
95 };

27


	Introduction
	Coordinates
	Sky Survey Data
	Photometry

	Parametric Model
	Bar Variations

	Visualising the model
	Method of Computation
	Comparison & Residuals

	Conclusions
	Acknowledgements
	Bibliography
	Coordinate Transformations
	Parameters
	Code

