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Abstract

The asymptotic structure and symmetries of asymptotically flat spacetime are closely
related to the gravitational memory effect, whereby detectors are permanently displaced
relative to one another due to the passing of gravitational radiation. We examine the
asymptotic properties and structure of a class of non-asymptotically flat spacetimes, includ-
ing the dust-filled spatially hyperbolic and decelerating spatially flat Friedmann–Lemaître–
Robertson–Walker universes. In order to study asymptotic structure, we inspect the Bondi–
Sachs criterion of asymptotic flatness with respect to these universes, and compare the
rate of falloff in the deviation of outgoing radial light rays. We take the first steps toward
studying gravitational memory in these universes by deriving their associated groups of
asymptotic Killing vectors, and comparing them to the well-known case of asymptotically
flat spacetime.
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1 Introduction

An ancient and foundational question in physics is of the nature of space and time. Before
the advent of special and general relativity at the turn the twentieth century, spacetime was
understood to be the ambient, non-dynamical background on which the physical systems of
nature play out. The modern understanding provided by general relativity is that spacetime
itself is a dynamical manifold coupled to the matter and energy it contains. This dual role
of spacetime introduces a layer of complexity which prevents widely accepted definitions
of energy in general relativity—in particular, of gravitational energy.

The presence of symmetries in a given spacetime enable the formulation of concrete
energy–momentum conservation laws, and these are therefore of central importance. How-
ever, such symmetry-dependent laws do not exist for general spacetimes. Analogously,
gravitational waves and the gravitational memory effect can be elegantly understood in
terms of spacetime symmetries manifested asymptotically far from gravitational sources.
However, the usual analysis [1–5] is largely concerned with the class of spacetimes which
are stationary and flat at large distances from sources, and does not apply to cosmolo-
gies with a finite past nor non-zero spatial curvature, for example. This project aims to
investigate the asymptotic structure of simple spacetimes which need not be flat at asymp-
totically large distances from sources, with the intention of extending the usual analysis of
asymptotic symmetries and gravitational memory to more general spacetimes.

Gravitational Waves

Gravitational waves are perturbations in spacetime propagating at the speed of light which
are caused by accelerated masses. Gravitational waves carry energy, causing binary systems
to in-spiral as orbital energy escapes in the form of gravitational radiation. The first direct
detection of gravitational waves was made by the Laser Interferometer Gravitational-Wave
Observatory (LIGO) in 2015 [6], where gravitational waves emitted by the in-spiral and
final merger of a binary black hole system were measured on Earth for the first time.

Historically, there was debate over the physical reality of gravitational waves as solutions
to Einstein’s field equations. Gravitational waves were predicted in 1916 by Einstein in the
context of linearised gravity, in which the perturbations of spacetime are infinitesimal and
can be modelled by a field on a non-dynamical background spacetime. For several decades,
it was unclear whether the wave-like solutions in linearised gravity were physical, or merely
artefacts of linearisation [7]. Furthermore, the idea of energy-carrying gravitational waves
was problematic, since gravitational energy is not localisable. This is because of Einstein’s
strong equivalence principle, which asserts that there always exists a local inertial frame in
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which the presence of gravity is indistinguishable from its absence; i.e., in which physical
laws reduce to special relativity within a sufficiently small neighbourhood. This means a
frame-invariant definition of local gravitational energy must imply that gravitational energy
vanishes everywhere. Hence, a sensible definition of gravitational energy is non-local.

Motivated by the need to distinguish between physical, observer-independent gravita-
tional wave phenomena and ‘coordinate illusions’, H. Bondi, K. Sachs and others developed
a framework to describe gravitational radiation in an invariant fashion [1, 8], nearly half
a century after Einstein’s initial proposal of gravitational waves. This framework is the
Bondi–Sachs formalism. The framework is well suited to the study of gravitational waves,
since it coordinatises spacetime using the null (lightlike) geodesics followed by outgoing
gravitational radiation. It also provided the first convincing evidence that gravitational
radiation was physical and accompanied by energy loss in isolated systems. The formalism
also provides a natural way to characterise the asymptotic flatness of a spacetime, and
furthermore, its asymptotic symmetries.

Asymptotic Symmetries

The symmetries which arise at large distances in asymptotically flat spacetimes are im-
portant for understanding gravitational waves. While an arbitrary spacetime possesses no
bulk symmetries, many physically relevant spacetimes admit asymptotic symmetries which
pertain to global structure. These asymptotic symmetries were first investigated by Bondi,
Sachs et al. for the case of asymptotically flat spacetimes, characterised by the condition
that the deviations of the physical metric from the flat metric fall off at an appropriate rate
as on recedes from gravitational sources (detailed in section 3.1). Previously, it was as-
sumed that the group of symmetries which left the asymptotic region invariant (i.e., which
preserved the falloff condition for asymptotic flatness) was the same symmetry group as
that of flat spacetime. However, Bondi et al. showed that this assumption was wrong: in
fact, the asymptotic symmetry group—now known as the Bondi–Metzner–Sachs (BMS)
group, detailed in chapter 5—is an infinite dimensional generalisation of the group of sym-
metries of flat spacetime [1, 3, 8]. It has since been established [9] that the enlargement of
the asymptotic symmetry group can be attributed directly to the existence of gravitational
waves.

This surprising discovery has a number of physical consequences. Firstly, the exis-
tence of an enlarged asymptotic symmetry group means that general relativity does not, in
fact, reduce to special relativity far away from sources as was previously expected. Unlike
special relativity, general relativity admits degenerate vacua (physically distinct vacuum
states) which can even carry non-zero angular momentum [3, § 1.2]. Secondly, the enlarged
symmetry group implies the existence of conserved charges left by gravitational radiation,
which directly relate to the relatively new (c. 1974, [10]) phenomenon of gravitational mem-
ory.

Gravitational Memory

Gravitational memory is the physical effect whereby free-falling particles are permanently
displaced relative to one another after the passage of a gravitational wave train—without
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Figure 1.1: Exaggerated depiction of the gravitational memory effect in a simple detector. As a
gravitational wave passes into the plane of the page, the proper distances among unaccelerated
test particles fluctuate before remaining altered.

the particles being accelerated. (See figure 1.1. For a first introduction, see [11, 12].)
The gravitational memory effect is of special empirical and theoretical interest, with the
prospect of gravitational memory becoming detectable in the coming decades. It is gener-
ally agreed that LIGO is unable to detect gravitational memory (because of the incredible
precision required and the problem of seismic noise), but next-generation instruments such
as the space-bound Laser Interferometer Space Antenna (LISA) or the use of pulsar timing
arrays show promise [12, § 1].

The memory effect arises as a consequence of gravitational radiation inducing transi-
tions among the many degenerate vacua of spacetime. In initially flat spacetime, relatively
stationary particles will oscillate1 during the passing of a gravitational wave train before
returning to a stationary configuration in the final vacuum state. However, since the
initial and final vacua may be distinct, the particles’ relative spacetime displacements may
be permanently altered [4]. More formally, the initial and final spacetime configurations
are related by the action of an asymptotic symmetry belonging to the BMS group (dubbed
“supertransformations”2). This fascinating relationship between asymptotic symmetries
and gravitational memory forms two vertices of what is known as “the infrared triangle of
equivalence” [3, 13]. It is in this way that understanding the asymptotic symmetries of
the BMS group lends valuable insight into the physical nature of gravitational memory.

Non-asymptotically Flat Spacetimes

A natural question which arises is how the asymptotic symmetries (and by extension, the
memory effect) differ in spacetimes which are not asymptotically flat. Toward this end,
we extend the analysis of the asymptotic structure and symmetries of flat spacetimes to
various Friedmann–Lemaître–Robertson–Walker (FLRW) universes, which exhibit a finite
past and zero or negative spatial curvature.

Chapter 2 explores the relationship between a simple non-gravitational model of an
expanding universe (the Milne universe) and a particular FLRW model, which serves to
provide insight into the asymptotic structure of the latter. In chapter 3, we investigate the
asymptotic nature of various FLRW universes by inspecting their Bondi–Sachs flatness and
the asymptotic deviation of light rays. Chapter 4 formally defines the asymptotic region
of a spacetime via the Bondi–Penrose formalism, and makes the asymptotic structure of
various FLRW universes explicit. Finally, asymptotic symmetries are defined and derived
for selected FRLW spacetimes, and the results are compared to the asymptotically flat
case. Sections 3.2, 3.3, 4.2, and 5.2 are original work.

1More precisely, it is the proper lengths between the particles (i.e., the metric itself) which fluctuates.
2“Supertransformations” bear no relation to supersymmetry; the prefix “super” is given to infinite-

dimensional objects possessing familiar finite-dimensional analogues (in this case, the Poincaré group).
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2 The Milne Universe

We are ultimately interested in the asymptotic properties of FLRW models as compared
with Minkowski (flat) spacetime. The Milne universe is an interesting ‘toy model’ which
bridges the gap between Minkowski spacetime and the future limit of the dust solution of
the FLRW universe with negative spatial curvature. The Milne universe is equivalent to
both under a suitable ‘change of observers’, providing a useful link between the two.

The Milne universe is a non-gravitational empty universe model proposed in 1935 by
E. Milne [14] in an attempt to develop a rival theory to general relativity. Using this model,
Milne purported to explain the expanding universe in the context of special relativity
alone. While the Milne cosmology is not a successful modern alternative to Einstein’s
general relativity, its significance is that it is a non-gravitational model of an infinite,
empty, expanding, negatively curved universe. Such features are often associated with
gravitational cosmologies, and thus the Milne universe serves as useful example to help
differentiate between those properties of a cosmological model which require gravity and
those which are simply consequences of special relativity [15]. In this case, it is of interest
because of its simplicity and resemblance in the infinite future to a particular FLRW
universe in the gravitational theory, detailed in the following section.

The Milne universe can be constructed from empty Minkowski spacetime by introducing
a ‘big bang’ at the origin from which an explosion of test particles are emitted over all
possible directions and velocities β ≡ |v|/c < 1. All matter is contained within the origin’s
future light cone r < ct, inside a finite spherical bubble expanding at the speed of light
on a rigid Minkowski background. Spacetime at earlier times or beyond the region r < ct
where there exists no matter is interpreted as non-physical in the Milne model.

If the density of emitted test particles in velocity space is proportional to γ2 = (1−β2)−1,
then the Milne universe is Lorentz invariant about the origin. Thus, to an observer riding an
inertial test particle (a Milne observer), the cosmological principle holds; i.e., the universe
appears the same to any such Milne observer. This symmetry motivates the adoption of
the Lorentz-invariant Milne observer proper time τ as the cosmic time coordinate. We also
adopt the reduced-circumference radial coordinate r to form Milne observer coordinates
(τ, r,ΘA) where, in terms of concentric spherical coordinates (t, r,ΘA),

cτ =
√
c2t2 − r2, r = r/cτ, (2.1)

are defined for r < ct and the angular coordinates are preserved. While t-hypersurfaces
of the Milne universe contain matter interior to the sphere of radius ct, τ -hypersurfaces
contain matter spread homogeneously and isotropically to spatial infinity, resulting in an
apparently open universe from the perspective of Milne observers. By substituting the
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Figure 2.1: Depiction of the Milne universe embedded in flat Minkowski spacetime (t, x, y, z), with
y and z suppressed. Milne observers are emitted from the origin and follow worldlines of constant
β. Spacetime outside the cone r < ct is not considered part of the Milne universe.

Milne coordinates (2.1) into the Minkowski metric with signature (−,+,+,+), we derive
the Milne metric g ≡ ds2 in reduced-circumference spherical coordinates

ds2 = ηµνdx
µdxν = −c2dτ 2 + c2τ 2

[
dr2

1 + r2
+ r2dΘ2

]
, τ, r > 0, (2.2)

where dΘ2 = dθ2 + sin θ dϕ2 is the metric of the unit 2-sphere, and dx2 ≡ dx dx ≡
dx ⊗ dx. The Milne metric is so-called to emphasise the differing physical interpretation
to the Minkowski metric, even though (2.2) is indeed isometric to (the future light cone
of) Minkowski spacetime under the coordinate transformation (2.1).

The Milne metric may be written succinctly by employing conformal time η (satisfying
dτ = τdη) and hyperspherical radial χ coordinates,

ds2 = c2τ 20 e
2η
[
−dη2 + dχ2 + sinh2 χdΘ2

]
, (2.3)

where (η, χ) are dimensionless and related to the Milne coordinates by r = sinhχ and
τ = τ0e

η, with τ0 as a temporal scaling constant. Throughout this report, the symbols
η and χ will always refer respectively to the conformal time and hyperspherical radius
associated with a metric.

2.1 The Milne Universe as an FLRW Universe

The Friedmann–Lemaître–Robertson–Walker (FLRW) metrics1 are exact solutions to Ein-
stein’s field equations which describe a spatially homogeneous and isotropic expanding
universe, first published in the 1920s [16–18]. In reduced-circumference spherical coordi-
nates (t, r,ΘA), a general FLRW metric has the form

ds2 = −c2dt2 + a(t)2
[

dr2

1− kr2
+ r2dΘ2

]
, (2.4)

1Also known as the Friedmann, FL, FRW, or RW metrics.
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where a(t) is the cosmic scale factor and the constant k is the Gaussian curvature of spacial
sections when the scale factor is unity. The curvature constant—which may be positive,
zero, or negative in the respective cases of closed, spatially flat or spatially hyperbolic
universes—may be normalised to k ∈ {−1, 0, 1} by rescaling r → r/

√
|k|, which shall be

assumed. Einstein’s equations with the metric (2.4) imply the two2 Friedmann equations,
which together relate the scale factor to the pressure and energy density of the homogeneous
universe. The first Friedmann equation is(

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ+

c2

3
Λ, (2.5)

where ρ is the matter density, Λ is the cosmological constant and ȧ ≡ da/dt .
The Milne metric (2.2) has the form of the FLRW metric (2.4) with negative spatial

curvature k = −1 and linear scale factor a(τ) = cτ . Linear cosmic expansion a(t) ∝ t is
predicted by general relativity via the Friedmann equation (2.5) in the open case k = −1
precisely when the cosmological constant Λ and density ρ both vanish. Therefore, the
Milne universe may be regarded as an empty, open FLRW universe with zero cosmological
constant.

In a purely dust-filled universe, the density ρ ∝ a−3 scales as the inverse of spatial
volume. In this case, the Friedmann equation (2.5) admits the parametric solution [17]

a = A (cosh η − 1), ct = A (sinh η − η), (2.6)

where A is a constant of dimensions length and the parameter η is identified as conformal
time, satisfying c dt = adη. In terms of the conformal time coordinate η and hyperspherical
radial coordinate χ = arcsinh(r/r0), the open FLRW metric (2.4) takes the form

ds2 = a2
[
−dη2 + dχ2 + sinh2χ dΘ2

]
, (2.7)

which differs from the Milne metric (2.3) only by the form of the scale factor. In the far
future limit as η → ∞, the scale factor of a dust-filled open FLRW universe a → 1

2
A eη

approaches that of the Milne universe, a(τ) = cτ0e
η, if the constant of integration is chosen

as A = 2cτ0. In this sense, the Milne universe is obtained as the far future limit of a dust-
filled open FLRW universe. This relationship allows for the consideration of properties of
such an FLRW universe taken in the familiar Milne universe limit, where they may be more
easily interpreted. It also suggests that there may be a sense in which the open FLRW
universe is asymptotically flat to the future.

2The two Friedmann equations are related on account of the Bianchi identity; the first equation (2.5)
and ∇µG

µν = 0 together imply the second (3.14).
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3 Notions of Asymptotic Flatness

The flat Milne universe may be recovered from the open FLRW universe in the far fu-
ture limit. We therefore expect that the open FLRW universe is ‘eventually flat’ in an
appropriate sense. There exist several subtly distinct notions of asymptotic flatness.1
Loosely speaking, this is because there is no a priori preferred method of determining
what asymptotic boundary conditions should be applied to the dynamical manifold rep-
resenting spacetime. Boundary conditions are typically chosen to be permissive enough
to admit gravitational wave solutions, but strong enough to exclude non-physical space-
times with infinite total energy [3, § 5.1]. In this section, aspects of the asymptotic flatness
of the Milne, open FLRW and spatially flat FLRW universes are investigated from two
approaches; the Bondi–Sachs criterion of asymptotic flatness and the behaviour of null
geodesics at asymptotic distances.

3.1 The Bondi–Sachs Criterion

A simple and physically-motivated criterion of asymptotic flatness is due to Bondi and
Sachs [1, 2]. The Bondi–Sachs criterion is a consequence of the requirement that the
physical metric gab approach the Minkowski metric ηab at a rate of O(1/r) for an appropriate
radial coordinate r as one recedes along null directions from the origin. While it is a natural
condition, it remains unclear whether this condition is too stringent to include other fields
of interest [2]. The criterion itself employs retarded Bondi coordinates (u, r,ΘA), which
are defined to satisfy the following conditions [22, § 2]:

i) The coordinate u is a retarded null coordinate; a hypersurface of constant u = u0 is
the future light cone of the point (r, u) = (0, u0). Consequently, the normal covector
ka = −∂au to the u-hypersurface is null (kaka = 0) which implies guu = 0.

ii) Null rays of constant u are also of constant angular coordinate ΘA. This implies the
future-pointing tangent vector ka = gabkb to a u-hypersurface satisfies ka∂ax

A = 0,
so that guA = 0.

iii) The radial coordinate r is an areal coordinate, i.e., det gAB = r4 det qAB where
qABdx

AdxB = dΘ2 is the unit 2-sphere metric. Equivalently, ∂r det (gAB/r
2) = 0.

1A spacetime may inequivalently be asymptotically weakly simple in the sense of Penrose [19], asymp-
totically Minkowskian in the sense of Geroch [20] or asymptotically flat at null infinity in the sense of
Ashtekar–Xanthopoulos [21] to name a few. Note that spatial flatness does not imply spacetime flatness.
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A general metric written in retarded Bondi coordinates, by virtue of the conditions above,
has the form [1, pt. B]

ds2 = −V

r
e2βdu2 − 2e2βdudr + r2qAB

(
dxA − UAdu

)(
dxB − UBdu

)
, (3.1)

where V, β and UA are functions on spacetime and qAB is the metric of the unit 2-sphere.
Such a metric satisfies the Bondi gauge grr = grA = 0, allowing the Bondi form to be viewed
as a (partial) gauge fixing of the metric components. A spherically symmetric spacetime,
for which UA = 0, then has the Bondi form

ds2 = −e2β
[
V

r
du2 + 2dudr

]
+ r2dΘ2. (3.2)

Thus, for a spherically symmetric spacetime, the condition that r be an areal coordinate
is equivalent to the requirement that the coefficient of the 2-sphere metric dΘ2 be r2.

The Bondi–Sachs criterion of asymptotic flatness itself is the conjunction of the bound-
ary conditions

lim
V

r
= 1, lim β = lim rUA = 0, limhAB = qAB,

where the limits are taken as r → ∞ with u and ΘA fixed [1]. It this limit, the general
metric (3.1) reduces to Minkowski spacetime, and the criterion defines a concrete notion
of asymptotic flatness—although they are a rather unsatisfactory replacement of more
geometrical notions due to their explicit coordinate dependence [8, § 6].

3.1.1 The Bondi Form of a General FLRW Universe

We wish to express spherically symmetric FLRW metrics in Bondi form (3.2) so that
we may inspect them in the Bondi–Sachs formalism. The general FLRW metric (2.4) in
conformal time η and hyperspherical radial χ coordinates, for a normalised curvature k, is

ds2 = a2(η)
[
−dη2 + dχ2 + sink(χ)2dΘ2

]
where sink(χ) =


sinχ k = +1,

χ k = 0,

sinhχ k = −1.

In particular, this metric satisfies det gAB = (a2 sink(χ)2)
2
det qAB, leading to the areal

coordinate r = a(η) sink(χ). Null coordinates are constant along null hypersurfaces ds2 =
0 ⇐⇒ dη±dχ = 0, and hence u = η−χ is a retarded null coordinate. These coordinates
(u, r,ΘA) yield the inverse Jacobian matrix(

dη
dχ

)
=

1

A+B

(
A 1
−B 1

)(
du
dr

)
where

{
A = a sink′(χ),

B = aȧ sink(χ)/c,
(3.3)

leading to the Bondi form of a general FLRW universe:

ds2 = − a2

A+B

[
(A−B)du2 + 2dudr

]
+ r2dΘ2. (3.4)
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By identification of (3.4) with the spherically symmetric metric (3.2), the Bondi–Sachs
criterion for FLRW spacetimes reads

lim (A−B) = lim gur ≡ lim
−a2

A+B
= O(1), with

{
r → ∞
u = u0

, (3.5)

where O(1) denotes a non-zero constant with dimensions of length,2 independent of r.
Closed FLRW metrics with k > 0 will not be considered because of their finitude and
lack of interesting asymptotic structure. From now on, an FLRW metric will refer only to
spatially flat or open FLRW metrics.

3.2 Bondi–Sachs Flatness of FLRW Universes

We have shown that the isometrically flat Milne universe is the far future limit of the
dust-filled open FLRW universe. With this relationship in mind, we are interested in
whether such a universe satisfies the Bondi–Sachs criterion of asymptotic flatness to the
far future: on the one hand, it is characterised by negative spatial curvature; on the other,
it is asymptotic in the far future to the Milne universe.

We can easily verify that the Milne universe, with

a = cτ0e
η, A = cτ0e

η coshχ, B = cτ0e
η sinhχ,

satisfies the criterion (3.5), since A − B = cτ0e
u0 = O(1) and − gur = cτ0e

u0 = O(1). In
the case of the dust-filled open FLRW universe, however, we find that

A = A (cosh η − 1) coshχ, and B = A sinh η sinhχ, (3.6)

leading to the limits

A−B = A (coshu0 − coshχ) = O(eχ) = O(ln r), (3.7)

where u0 = η − χ, and

−gur =
a2

A+B
=

A
[
cosh

(
v+u0

2

)
− 1

]2
cosh

(
v−u0

2

)
− cosh(v)

→ A

2
eu0 = O(1), (3.8)

where v = η + χ → ∞. The second limit −gur → A /2eu0 = O(1) is satisfied, while the
first limit (3.7) diverges logarithmically (note that r = a sinhχ = O(eη+χ) → ∞). This
indicates that the dust-filled open FLRW universe is not asymptotically flat in sense of
Bondi–Sachs, even in the far future limit.

A related question is whether any spatially flat FLRW models satisfy the Bondi–Sachs
criterion, or to what degree they fail. We consider spatially flat FLRW models with a sin-
gle species of homogeneous, isotropic matter obeying a linear equation of state p = wρc2,

2Note that the coordinates u and r in Bondi metric (3.1) as quoted from [1] have dimensions of length,
whereas here u and r are dimensionless, with the metric components carrying dimensions of length instead.
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where w is the dimensionless parameter of state. The case w = 1/3 is of particular inter-
est, corresponding to a radiation-dominated cosmology (crudely) approximating our early
universe. A spatially flat FLRW universe with such matter solves the Einstein equations
if the scale factor satisfies the power law [17]

a(t) = a0

(
t

t0

) 2
3(1+w)

=: k0t
p. (3.9)

The associated conformal time and areal coordinates are

c dt = adη ⇐⇒ η =
1

1− p

c

k0
t1−p, and r = aχ = k0χt

p. (3.10)

The lengths A and B defined in (3.3),

A :=
∂r

∂χ
= k0t

p, B :=
∂r

∂η
=

k2
0

c
χpt2p−1,

lead to the limits

A−B = k0

[
(1− q)tp +

k0
c
pu0t

2p−1

]
,

where u0 = η − χ and q := p
1−p

, and

gur = − aη

(η − u0)q + η
, where a = k0t

p = k0

[
k0
c
(1 + q)η

]q
. (3.11)

The strong energy condition, derived from the requirement that ‘matter must gravitate
toward matter,’ is the constraint that w > −1/3 ⇐⇒ 0 < p < 1, corresponding in the
spatially flat case to a decelerating universe. With the strong energy condition assumed,
t grows monotonically with η, and the quantity A − B may be evaluated in limit along
outgoing null rays; η, χ → ∞, with u = u0 fixed. The condition that lim(A−B) = O(1) has
two solutions: it is satisfied in the degenerate limit p = 0 ⇐⇒ a(t) = a0, corresponding
to Minkowski spacetime; or in the case q = 1 = 2p ⇐⇒ w = 1/3, corresponding to
a radiation-filled universe. The second limit lim gur = O(1) is satisfied in the degenerate
case, but not in the radiation-dominated case, where lim gur = O(η) = O(

√
r) diverges.

This shows that spatially flat FLRW universes are not asymptotically flat in the sense of
Bondi–Sachs (except in the degenerate case of Minkowski spacetime); the criterion requires
spatial and temporal asymptotic flatness. The extent to which these universes fail the
criterion is apparent in the metric component gur = O(ηq) = O

(
rq/2

)
. More interesting

is the failure of the dust-filled open FLRW universe to satisfy the criterion (3.5), since
its limit to the far future is exactly the Milne universe, whose metric is globally ηµν in
suitable coordinates. In this case, it is the metric component guu = gur(A− B) = O(ln r)
which diverges. Since O(ln r) grows slower than O

(
rq/2

)
for any q > 0, it appears that the

open FLRW metric is ‘closer’ to satisfying the Bondi–Sachs criterion than any spatially
flat FLRW metric—although this comparison is informal and its physical significance is
unclear.
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3.3 Asymptotic Deviation of Null Geodesics

Another indicator of asymptotic flatness is the behaviour of an initially near-parallel beam
of light rays as they escape to infinity along null geodesics (i.e., to future null infinity I +,
formally defined in chapter 4). More precisely, we are interested in the geodesic deviation
of null rays at asymptotic distances. The geodesic deviation equation in the case of null
geodesics implies Sachs’ optical equation (3.12) [23], which is formulated in terms of a small
area A orthogonal to the tangent vector P µ := dxµ/dλ of the path xµ(λ) of a null ray. The
area A represents the cross section of a beam of co-moving light rays near xµ(λ), and the
growth of A(λ) indicates divergence of the rays. Divergence is an indicator of spacetime
curvature, and the rate at which divergence vanishes with respect to an affine parameter
λ is a physical measure of ‘how quickly a spacetime flattens out’.

With respect to an orthonormal frame (P µ, Qµ, Lµ
1 , L

µ
2) where Qµ is a null vector or-

thogonal to P µ and Lµ
α∈{1,2} span the plane of A, Sachs’ optical equation takes the form

1√
A

d2

dλ2

√
A = −1

2

(
RµνP

µP ν + w2
)
, (3.12)

where w2 = wαβwαβ is the square of the traceless shear of the null congruence [24, § 14]. In
homogeneous and isotropic cosmologies, the Weyl curvature—and hence the shear tensor
wαβ—vanishes, so that the only contribution to divergence is from the Ricci tensor.

For a general FLRW metric (2.4) in reduced-circumference spherical coordinates (t, r,ΘA),
an outgoing radial null ray has tangent vector P µ = c dt/dλ

(
1,
√
1− kr2/ca, 0, 0

)
by the

requirement PµP
µ = 0. The non-zero components of the Ricci tensor for a general FLRW

spacetime are [25]

Rtt = −3
ä

a
, Rrr =

B

1− kr2
, Rθθ = Br2, Rϕϕ = Br2 sin2 θ,

where B = (aä+ 2ȧ2)/c2 + 2k. In this case, Sachs’ optical equation (3.12) evaluates to

1√
A

d2
√
A

dλ2
=

(
dt

dλ

)2(
ä

a
− ȧ2

a2
− kc2

a2

)
. (3.13)

In the case of the Milne universe (k = −1, a = ct), the right hand side vanishes
identically, since the Milne universe is everywhere flat. In the case of an FLRW universe,
the first Friedmann equation (2.5), in conjunction with the second Friedmann equation,

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
, (3.14)

where p is the homogeneous pressure, reduce the optical equation (3.13) to

1√
A

d2
√
A

dλ2
= −4πG

(
ρ+

p

c2

)( dt

dλ

)2

. (3.15)

For a matter source obeying an equation of state p = wρc2, the Friedmann equations relate
the matter density to the scale factor by the power law

ρ = ρ0

(a0
a

)3(1+w)

,

11



and the Einstein equations are satisfied if the scale factor satisfies the power law (3.9). In
the spatially flat case, therefore, the optical equation (3.15) gives the rate of decay

1√
A

d2
√
A

dλ2
= −4πGρ0(1 + w)

(
dt

dλ

)2(
t0
t

)2

∝
(
dt

dλ

)2
1

t2
→ 0,

for any −1 < w < 1, including dust w = 0 and radiation w = 1/3. We see that the
asymptotic flatness of spatially flat FLRW universes is characterised by an O(1/t2) falloff
in the deviation of light rays.

On the other hand, the dust-filled open FLRW universe (k = −1, p = 0) is spatially
curved with a matter density ρ/ρ0 = (a/a0)

−3 which decreases with increasing scale factor.
The scale factor a and cosmic time ct as in (2.6) for such a universe both approach A /2eη

as η → ∞, so that in the far future limit, a/ct ≈ 1 and the optical equation (3.15) becomes

1√
A

d2
√
A

dλ2
∝

(
dt

dλ

)2
1

t3
→ 0.

We see that the O(1/t3) falloff is faster in the open FLRW universe than in any spatially
flat FLRW model: in a sense, it approaches flat space faster with increasing distance.

To better understand the physical meaning of the these falloff rates, we also consider
the Schwarzschild solution as an example of an asymptotically Minkowskian spacetime.
The geodesic deviation of a congruence of null geodesics with tangent vector P µ is

D2ξµ

dλ2
= Rµ

ρσνP
ρP σξν ,

where ξµ is the separation vector between nearby geodesics with affine parameter λ. Using
spherical symmetry, the area A of a beam of light rays orthogonal to P µ evolves as

1√
A

d2
√
A

dλ2
∝ 1

∥ξ∥
d2∥ξ∥
dλ2

,

if the separation vector ξµ is taken to be in the plane of A with area A ∝ ∥ξ∥ ≡ ξµξµ.
Furthermore, in Cartesian isotropic coordinates (t, x, y, z) with the ray travelling outward
in the zt-plane, the separation vector ξ ∈ span {∂x, ∂y} is in the plane of A, and we may
take it to be ξ = ξx∂x for simplicity. This results in

1

∥ξ∥
d2∥ξ∥
dλ2

=
1

ξx
D2ξx

dλ2
= Rx

µνxP
µP ν (no sum on x),

which, after computing the Riemann components (see appendix A), yields a falloff of
O(1/r3) for the Schwarzschild geometry. For null geodesics, this is equivalently O(1/t3).

We have seen that the falloff of null geodesic deviation in a spatially flat FLRW universe
is of a slower order, O(1/t2), than in other spacetimes considered; namely, the open FLRW
universe and the Schwarzschild geometry. The falloff in open FLRW universe, O(1/t3), is
the same as in the asymptotically flat Schwarzschild geometry, again suggesting that it is
appropriate to extend notions of asymptotic flatness to include the open FLRW universe.
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4 Asymptotic Regions of Spacetime

We wish to explore the asymptotic symmetries of the Milne and FLRW spacetimes. To do
this, a concrete definition of the asymptotic region is beneficial. The asymptotic region may
be identified as the boundary of a spacetime after it undergoes conformal compactification,
i.e., an angle-preserving transformation onto a finite manifold possessing a boundary. This
identification is a useful because such a transformation preserves the causal structure of
the original spacetime; in particular, null vectors remain null. Penrose first published a
conformal compactification of Minkowski spacetime in 1964 [19], resulting in the invention
of Penrose (or Carter–Penrose) diagrams, allowing the study of infinite spacetimes in a
finite context. The modern formulation of this technique, known as the Bondi–Penrose
formalism [22], is outlined here.

If M is a smooth Lorentzian manifold equipped with a metric gab, then the pair (M , gab)
represents a spacetime of general relativity. In the Bondi–Penrose formalism, the physical
metric ĝab on M̂ is conformally related to a non-physical metric gab, which exists on a com-
pact spacetime manifold–with–boundary M . In Penrose’s compactification of Minkowski
spacetime [19], null geodesics begin and terminate on subsets of the boundary ∂M of the
compact spacetime known as past I − and future null infinity I +, respectively. This
enables the study of the symmetries of past or future null infinity I , which enables an
elegant formulation of the asymptotic behaviour of gravitational waves and memory.

Definition 1. A physical spacetime (M̂ , ĝab) is asymptotic to a compact spacetime (M , gab),
where M is a smooth manifold with boundary ∂M ≡ I , if and only if there exist:

i) a bijective mapping Ψ : M̂ → M \ I ; and

ii) a smooth function Ω : M → R,

with the following properties:

a) gab = Ω2ĝab everywhere on M̂ ;

b) Ω = 0 and ∇aΩ ̸= 0 everywhere on I .

The bijection Ψ is implicitly used in a) to bring the objects into the same space;
explicitly, it reads Ψ∗g = Ψ∗(Ω2)ĝ where Ψ∗ is the pullback of Ψ. The condition ∇aΩ ̸= 0
on I ensures that the scalar field Ω may be used as a coordinate on M , allowing Taylor
expansions in Ω to be performed which capture the degree of fall-off of physical fields [7].

13



4.1 The Penrose Compactification of Flat Spacetime

The Penrose compactification of Minkowski spacetime [19] employs retarded u = t− r and
advanced v = t+ r null coordinates, (u, v,ΘA). The Minkowski metric then reads1

dŝ2 = −du dv +
1

4
(u− v)2dΘ2. (4.1)

In the standard compactification, Minkowski spacetime (M̂ , dŝ2) is mapped onto the
manifold-with-boundary M by the diffeomorphism Ψ : M̂ → M \ I defined by the
coordinate mapping

(u, v,ΘA) 7→ (U, V,ΘA) where
{
u = tanU,

v = tanV.

Because the radius r is non-negative, we have u ≤ v, and the range of the compact
coordinates may be written (U, V ) ∈ T, where T is a closed triangular subset of R2 given
by T =

{
(U, V ) ∈ [−π

2
, π
2
] | U ≤ V

}
(see figure 4.1). Thus, we may identify2 the compact

manifold with M ∼= T×S2, where S2 is the 2-sphere. The induced metric on M (formally,
the pushforward of ĝ ≡ dŝ2 by Ψ) is

ds2 = Ω2dŝ2 = −dUdV +
1

4
sin2(U − V )dΘ2, (4.2)

where the conformal factor

Ω =
[
(1 + u2)(1 + v2)

]−1/2
= cosU cosV,

is identified, as quoted in [19]. Note that Ω vanishes smoothly on I , where u or v become
infinite, so that the metric ds2 is well defined everywhere on M . For convenience, define
the compactified spherical coordinates T = V +U and R = V −U with ranges −π ≤ T ≤ π,
0 ≤ R ≤ |T |. The boundary is then partitioned into spacelike, timelike and null infinity,
according to figure 4.1.

future timelike i+ (T,R) = (+π, 0)
spatial i0 (T,R) = (0,+π)

past timelike i− (T,R) = (−π, 0)
future null I + (U, V ) ∈ [−π

2
, π
2
]⊕ π

2

past null I − (U, V ) ∈ −π
2
⊕ [−π

2
, π
2
]

When considered in the context of the compactified spacetime (M , gab), all globally
timelike geodesics begin at past timelike infinity i− and end at future timelike infinity i+.
Similarly, all globally spacelike geodesics terminate at spacelike infinity i0. The fact that
i+, i0 and i− are single points in the diagram (representing 2-spheres in M ) corresponds
to the vanishing of the coefficient of dΘ2 in (4.2). (The manifold M does not possess

1Note that Penrose, employing the (+,−,−,−) convention; writes (4.1) and (4.2) with opposite sign.
2Topologically, this is not an isomorphism unless one identifies each S2 along the coordinate singularity

r = 0, or by using Cartesian spatial coordinates—but this is meant simply for visualisation.
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singularities there; those points are coordinate singularities of the same type as the origin
in polar coordinates.) Light rays, on the other hand, travel on null geodesics which originate
at a point on I − and terminate at a point on I +, travelling along diagonal lines [19].
Since gravitational radiation propagates along null rays, null infinity I and its symmetries
are significant in the study of gravitational waves and memory.

4.2 The Compactification of FLRW Universes

We proceed to find a conformal compactification of an open FLRW universe, treating
the Milne universe as a special case. As in the Penrose compactification of Minkowski
spacetime, we employ null coordinates (u, v,ΘA), defined by u = η − χ and v = η + χ
where (η, χ) are the conformal time and hyperspherical radial coordinates, as in (2.7). The
physical metric then takes the form

dŝ2 = a2(t)

[
−dudv + sinh2

(
u− v

2

)
dΘ2

]
.

Note that the domain of the coordinate t ∈ (0,∞) affects the domain of the conformal
time η, depending on the scale parameter a(t) of the cosmology in question. If we define
the compactification Ψ by

(u, v,ΘA) 7→ (U, V,ΘA) where
{
sinhu = tanU,

sinh v = tanV.

then the induced metric on the compact manifold M is

ds2 = Ω2dŝ2 = −dUdV + sechu sech v sinh2

(
u− v

2

)
dΘ2, (4.3)

where Ω = a−1(coshu cosh v)−1/2 is the conformal factor. This particular choice of Ψ in-
duces a metric ds2 which is finite everywhere on M . The coefficient of dΘ2 in (4.3) is
bounded by one, and is zero at timelike infinity i±. The compact manifold therefore pos-
sesses coordinate singularities at i± comparable to those in the Penrose compactification.

Considering the Milne universe (2.3) with a(t) = ct and t = t0e
η, a physical singularity3

is apparent at t = 0, corresponding to the Milne ‘big bang’. The range of the coordinates is
(η, χ) ∈ (−∞,∞)× (0,∞), and hence the range of the compact coordinates is (U, V ) ∈ T,
as in the Penrose compactification. Again, the compact manifold has topology M ∼= T×S2

and the conformal diagram (figure 4.2a) resembles Minkowski spacetime. Unlike Minkowski
spacetime, the region at t = 0 corresponding to I − is singular, and hence the Milne
universe possesses no physical past null infinity (from the perspective of Milne observers).

The dust-filled open FLRW universe with scale factor a = A (cosh η − 1) has a similar
physical singularity where a = 0 at η = 0. This restricts the compact coordinates to the
triangular region (U, V ) ∈ T′ := T∩{(U, V ) | U + V ≥ 0}, resulting in a compact manifold

3Regarding the Milne universe as a subset of Minkowski spacetime and suppressing its physical inter-
pretation, this is merely a coordinate singularity.
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i+

I +

i0

I −

i−

T

R

Figure 4.1: Penrose compactification of Minkowski spacetime. The two angular dimensions Θ2

are suppressed, and the triangular region is T. (Note that the dashed edge is not a boundary of
M .) The curved lines are timelike (vertical) and spacelike (horizontal) geodesics.

i+

I +

i0

I −

i−

T

R

(a) Milne universe

i+

I +

i0
S −i−

T

R

(b) ODF and DSF FLRW universes

Figure 4.2: Conformal diagrams of the Milne universe and a class of FLRW universes. Figure (b)
is the conformal diagram of both the open dust-filled (ODF) FLRW universe and a decelerating,
spatially flat (DSF) FLRW universe. Double-struck lines indicate singularities—i.e., regions which
correspond to the same physical point in the original spacetime (M̂ , ĝab).
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M ∼= T′ × S2 with a spacelike singularity S − to the past (figure 4.2b). This spacelike
boundary S − is not a past null infinity I − because it intercepts timelike geodesics as well
as null geodesics, and it is topology a point. Thus, the open dust-filled FLRW universes
possesses only future null infinity I +, with topology R× S2 in M̂ .

We shall also consider decelerating spatially flat FLRW spacetimes, which lends itself
easily to conformal compactification when written in conformal time,

ds2 = a(η)2
[
−dη2 + dχ2 + χ2dΘ2

]
, a ∝ ηq, q =

2

3w + 1
,

as the metric is manifestly conformal to Minkowski space with a conformal factor a(η).
The strong energy condition w > −1/3 is equivalent to the decelerating case q > 0 in a
spatially flat universe. In the decelerating case, we simply quote from [5, § 2.2] the that
the compactification may be performed with

(η, χ,ΘA) 7→ (T,R,ΘA) where (η, χ) =

(
sinT

cosT + cosR
,

sinR

cosT + cosR

)
,

with coordinate ranges (T,R) ∈ T′. Consequently, the decelerating spatially flat FLRW
universe also exhibits a future null infinity I + and a spacelike singularity S − to the past
(figure 4.2b).

We have determined the asymptotic structures of the open FLRW and decelerating
spatially flat FLRW universes, and shown that they both admit future null infinities I + ∼=
R× S2 of the same topology as asymptotically flat space. We may now investigate in the
asymptotic symmetries admitted by this class of spacetime at I +.
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5 Asymptotic Symmetry Groups

In general relativity, a symmetry of spacetime (or simply, a symmetry) is an isometry;
that is, a diffeomorphism1 which preserves the metric. For instance, the symmetries
of Minkowski spacetime form the Poincaré group, consisting of Lorentz transformations,
spacetime translations and combinations thereof. Every continuous symmetry of a general
spacetime can be represented as the flow of an associated vector field which generates the
symmetry. (Mathematically, smooth vector fields form the Lie algebra to the Lie group
of isometries.) Conversely, the diffeomorphisms generated as the flow of the vector field
ζ = ζa∂a are symmetries if and only if the vector field satisfies Killing’s equation,

Lζgab = 0.

In the case of Minkowski spacetime, the flow of the constant vector field ∂x is the continuous
translation (t, x, y, z) 7→ (t, x + s, y, z) by the distance s. This translation is a symmetry
because the metric is independent of x, so that L∂xηab = 0. By Noether’s theorem, there
exists an associated conserved charge: the x-component of relativistic four-momentum.

Asymptotic Killing vectors (AKVs) may be defined by a generalisation of Killing’s
equation, relaxing the condition of the vanishing of the metric under the Lie derivative to a
set of boundary conditions that the metric and its perturbations are to satisfy. Explicitly,
an asymptotic Killing vector ζ satisfies

Lζgab = δgab = O(rn), (5.1)

where metric perturbations δgab are allowed to be of order ≤ n in the radial coordinate,
where n ∈ Z is a falloff exponent, prescribed by the selected boundary conditions. In
practice, it is convenient to introduce a (partial) gauge fixing such as the Bondi gauge, and
require that the perturbations δgab also preserve the gauge. There is no canonical choice
of boundary condition δgab = O(rn) on the metric and its perturbations—even for the
simplest case of asymptotically flat spacetime. For the reasons expounded in chapter 3, it
is not clear which falloff conditions admit all physically interesting solutions while excluding
all ‘non-physical’ ones. The process of choosing suitable falloff and gauge conditions to each
spacetime has been humorously described as “more of an art than a science” [3, § 2.10].

1A diffeomorphism is a smooth transformation of spacetime, regarded as a mapping between manifolds
of the same topology. The term is also used loosely by physicists to mean what we call an isometry.
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5.1 Asymptotically Flat Spacetimes

In asymptotically Minkowski spacetime, the group of asymptotic Killing vectors of con-
tains the Poincaré group as a subgroup, since Killing vectors are automatically AKVs.
Before asymptotic symmetries were formally investigated in 1962 by Bondi et al. [1], it
was assumed that the Poincaré group was indeed the entire asymptotic symmetry group
of near-flat spacetime. However, to the surprise of Bondi, Metzner, van der Burg [1] and
Sachs [2], the asymptotic symmetry group of near-flat spacetime (named the BMS group)
is in fact an infinite-dimensional generalisation of the Poincaré group, as we will now see.

A general BMS ‘supertransformation’ can be found by solving the asymptotic Killing
equation (5.1) subject to gauge–preservation and the boundary conditions prescribed by
BMS. Preserving the Bondi gauge alone, δgrr = δgrA = gABδgAB = 0, yields the general
vector

ζ = f∂u +

[
−r

2
DAY

A +
1

2
D2f +O(1/r)

]
∂r +

[
Y A − 1

r
DAf +O

(
1/r3

)]
∂A, (5.2)

as derived in appendix B, where f
(
u, xA

)
and Y A

(
u, xB

)
are arbitrary smooth functions

and D is the covariant derivative on the 2-sphere. Constraining the form of (5.2) further
by enforcing the boundary conditions [26]

guu = −1 +O(1/r), gur = −1 +O
(
1/r2

)
, guA = O(1), gAB = r2qAB +O(r),

requires that Y A
,u = 0 ⇐⇒ Y A = Y A

(
xC

)
is a function of the 2-sphere, and that the

u-dependence of f is of the form

f
(
u, xC

)
= T

(
xC

)
+

u

2
DAY

A
(
xC

)
+O(1/r),

with T
(
xC

)
arbitrary.

5.1.1 The Subgroup of Supertranslations

The asymptotic Killing vector (5.2) of a perturbed Minkowski spacetime has three func-
tions’ worth of freedom; namely T

(
xC

)
and Y A

(
xC

)
. The Lie group of BMS supertrans-

formations is therefore infinite-dimensional, possessing an infinite dimensional Lie algebra
known as the BMS algebra [27, § 6.6]. The case where the Y A vanish is of particular
interest, wherein the AKV takes the simpler form

ζT = T
(
xC

)
∂u +

1

2
D2T

(
xC

)
∂r −

1

r
DAT

(
xC

)
∂A. (5.3)

In the case that T
(
xC

)
is constant (an ℓ = 0 spherical harmonic), equation (5.3) reduces

to a constant translation in retarded time; ζ ∝ ∂u. Furthermore, the spatial translations
∂x, ∂y, ∂z are recovered when T

(
xC

)
is a linear combination of the three ℓ = 1 spherical

harmonics. When T
(
xC

)
consists of higher harmonics, ℓ ≥ 2, then ζ is dubbed a super-

translation. Supertranslations can be viewed as angle-dependent translation in spacetime,
and their action on vacua is in correspondence with gravitational memory induced by
gravitational radiation [3, 9, 12, 26].
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5.1.2 Asymptotic Symmetries and the BMS Group

Noether’s theorem relates the conservation of the asymptotic structure of a spacetime
to a set of associated asymptotic symmetries. It appears natural to define the group of
asymptotic symmetries of a spacetime as exactly the group of diffeomorphisms generated
by its AKVs, since such diffeomorphisms preserve asymptotic structure. However, distinct
AKVs may act trivially on the asymptotic region; e.g., their action may be non-trivial on
the interior spacetime while falling off as r → ∞ at a rate sufficiently fast as to have no
‘physical effect’ at the boundary.2 Thus, the group of AKVs possesses many AKVs for
every physically distinct asymptotic symmetry.

Such gauge redundancy is undesirable in a definition of a symmetry group. Given
a precise notion of sufficiently fast falloff (inherited from the choice of boundary condi-
tions), AKVs can be classified as proper or improper according to whether their action on
the boundary falls off sufficiently slowly or quickly, respectively. (Proper and improper
AKVs are also respectively referred to as trivial and large asymptotic gauge transformations
in, e.g., [26].) The gauge redundancy in the group of AKVs may be eliminated by tak-
ing the modulus over improper AKVs (a.k.a. trivial asymptotic gauge transformations).
In the group theoretic language of [7], the asymptotic symmetry group is the quotient
Diff∞(M )/Diff0

∞(M ) of the group Diff∞(M ) of diffeomorphisms of the spacetime M
which preserve the asymptotic boundary conditions by its subgroup Diff0

∞(M ) of diffeo-
morphisms which are asymptotically trivial. The groups Diff∞(M ) and Diff0

∞(M ) consist
of improper (large) and proper (trivial) AKVs, respectively.

With these technicalities aside, the group of AKVs of asymptotically flat spacetimes
described in section 5.1 gives rise to the BMS group, B. It has been shown that the BMS
group has the natural semidirect3 decomposition

B ∼= SO(1, 3)⋉ S,

where SO(1, 3) is the Lorentz group and S is group of supertranslations, which form an
abelian subgroup of B. In the case of the Poincaré group, (Λ1, T⃗1) • (Λ2, T⃗2) = (Λ1Λ2, T⃗1+

Λ1T⃗2) where Λ ∈ SO(1, 3) and T⃗ ∈ R1+3. The BMS group may be understood as a direct
generalisation of the Poincaré group, P, which decomposes similarly into the Lorentz
group and the abelian subgroup of spacetime translations, R1+3;

P ∼= SO(1, 3)⋉R1+3.

An alternative representation of the BMS group exploits the isomorphism of SO+(1, 3)
with the group of Möbius transformations (conformal maps) PGL(2,C) on the Riemann
sphere. With the celestial sphere coordinatised with the complex coordinate z = eiθ cot θ

2
,

a general BMS transformation is of the form

z 7→ az + b

cz + d
, u 7→ K(z, z̄)u+ α(z, z̄), (5.4)

2The choice of boundary conditions determines which effects qualify as ‘physical,’ because whether or
not an AKV vanishes ‘sufficiently fast’ is dependent on this choice [3, 26].

3The semidirect product, ⋉, differs from the direct product by its modified group operation • : A×B →
A⋉B defined by (a1, b1) • (a2, b2) = (a1a2, b1φa1

b2) where φ : A → Aut(B) is an implicit homomorphism.
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where a, b, c, d ∈ C, | a b
c d | ≠ 0 and K and α are functions on the celestial sphere [5, 28].

The isomorphism SO+(1, 3) ∼= PGL(2,C) may be interpreted as the statement that the
orthochronous Lorentz group acts on the celestial 2-sphere in the same way that the Möbius
group acts on the Riemann sphere; by conformal transformations [29]. Physically, this
means that the effect of gravitational memory on a the vacuum is to leave it transformed
by a combination of a Lorentz transformation and an angle-dependent time translation [3].

5.2 Asymptotically FLRW Cosmologies

Kehagias and Riotto [5] claim that decelerating spatially flat (DSF) FLRW cosmologies
exhibit the full asymptotic BMS group on the basis that it possesses a future null infinity
I +. Their argument is that one may always define a ‘non-physical’ metric gab in terms
the physical metric ĝab by gab = ĝab/r

2, before taking the degenerate limr→∞ ds2 = dΘ2.
For the physical metric dŝ2 of a DSF FLRW universe, the non-physical metric is

ds2 =
1

a2r2
dŝ2 =

1

r2
[
−dη2 + dr2

]
+ dΘ2 r→∞−−−→ dΘ2.

The 2-sphere metric dΘ2 is then identified as the induced metric on I +, and its symmetries
are identified as (5.4). Since the induced metric is independent of u, it also admits a
general map u 7→ f(u, z, z̄) as a symmetry. However, Kehagias and Riotto impose a
further restriction on this freedom by requiring the null angle du/dΩ to be left invariant,
where Ω is any solid angle. If, under conformal transformations of the 2-sphere, we have
dΘ 7→ K(z, z̄)dΘ, then to preserve the null angle du/dΘ , we demand similarly that du 7→
K(z, z̄)du. This gives the general transformation u 7→ K(z, z̄)u + α(z, z̄), where α is a
constant of integration, as in (5.4) [5, § 3]. While this argument may be correct, it is much
less explicit than the characterisation of asymptotic symmetries in terms of the asymptotic
Killing equation.

We may extend the analysis of section 5.1 to calculate the asymptotic Killing vectors
of perturbed FLRW metrics by enforcing equivalent boundary conditions. In the asymp-
totically flat case, the constraints on the metric perturbations as prescribed by BMS are

δguu = O(1/r), δgur = O
(
1/r2

)
, δguA = O(1), δgAB = O(r), δgrr = δgrA = 0.

An equivalent set of boundary conditions for an asymptotically–FLRW universe must admit
the same perturbative freedoms. Therefore, the Bondi form (3.4) of an FLRW universe,
subject to equivalent boundary conditions has the metric components

guu = −a2
A−B

A+B
+O(1/r), guA = O(1), grr = 0,

gur = − a2

A+B
+O

(
1/r2

)
, gAB = r2qAB +O(r), grA = 0.

(5.5)

where a = a(η) is the scale factor and A(u, r) and B(u, r) are as defined in section 3.1.1.
The metric (5.5) satisfies the Bondi gauge, so the analysis may begin in the same

way as for an asymptotically flat metric. From the rr-component of equation (5.1), we
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obtain Lζgrr = 2gurζ
u
,r = 0 =⇒ ζu = f(u, xA). The rA-components of (5.1) yield

LζgrA = gABζ
B
,r + gurζ

u
,A = 0, so that

ζA,r = −gur
r2

DAf +O
(
1/r4

)
=⇒ ζA = Y A

(
xC

)
+DAf

∞∫
r

dr′
gur′

(r′)2
+O

(
1/r3

)
,

where DAf = qABf,B. By virtue of the Bondi gauge, the r-component ζr arises identically
to the asymptotically flat case, as derived in appendix B, ζr = − r

2
DAY

A+ 1
2
D2f+O(1/r3).

These results yield the (the generator of) the equivalent BMS ‘supertranslation’ in an
asymptotically FLRW universe,

ζT = f∂u +
1

2
D2f∂r +DAf

∞∫
r

dr′
gur′

(r′)2
∂A +O

(
1/r3

)
, (5.6)

where we have set Y A = 0 and dropped ≤ O(1/r3) terms. The behaviour of the coefficient
of DAf as r → ∞ is of particular interest: if it is of subleading order, then the action of
the supertranslation ζT on the celestial sphere vanishes; whereas if the term diverges, it
may be an indication that the selected boundary conditions (5.5) are not well-suited to the
spacetime in question.

5.2.1 Spatially Flat FLRW Cosmologies

With reference to (3.11), the metric of a perturbed spatially flat FLRW universe governed
by the equation of state p = wρc2 has ur-component

gur = − aη

(η − u0)q + η
+O

(
1/r2

)
.

For simplicity, we restrict our attention to the celestial sphere at u0 = 0 ⇐⇒ η = χ, in
which case we find from (3.10) that η = χ = cpr1−p(1− p)−p/k0, yielding an expression of
gur in terms of r,

gur = −k0(1− p)1+p
(r
c

)p

.

Further abbreviating h := 1 − p = 3w+1
3(w+1)

and integrating with respect to r, we find that
the angular components of the asymptotic Killing vector are

ζA = Y A + k0

( c

h

)h−1 1

rh
DAf +O

(
1/r3

)
.

Dropping O(1/r3) terms, this leads to the spatially flat FLRW ‘supertranslation’

ζT = f∂u +
1

2
D2f∂r + C

1

rh
DAf∂A, (5.7)

where the coefficient C of dimensions (length)h is C = k0
(
c
h

)h−1
= a0

(
1−p
ct0

)p
.

The implication of this result is that, since −1/3 < w ⇐⇒ 0 < h < 1, the DAf terms
in the ζA components fall off at a rate slower than O(1/r). Vector fields which are O(1) in
r have angular components which are O(1/r), since ∂A = O(r) for an areal coordinate r.
Thus, we see that the norm of the supertranslation AKV grows as ∥ζT∥ = O

(
r1−h

)
> O(1),

becoming infinite at I +, which suggests a breakdown of the usual analysis.
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Figure 5.1: Relationship between equation of state parameter w and the exponent h of the 1/r
falloff in the AKV (5.7) of a spatially flat FLRW spacetime. The AKV components ζA fall off
slower than 1/r the 0 < h < 1 region (blue) for all w > −1/3, and diverge for −1 < w < −1/3
(red).

5.2.2 The Open FLRW Cosmology

In the case of the open dust-filled FLRW universe, specified by (2.6) and (3.6),

a = A (cosh η − 1), ct = A (sinh η − η),

A = a coshχ, B = A sinh η sinhχ,

the metric component gur is given by (3.8);

gur = − a2

A+B
= − A (cosh η − 1)2

cosh(η + χ)− coshχ
.

We are interested in the integrand
gur
r2

dr = − 1

A
csch2 χ [cosh(η + χ)− coshχ]−1 dr,

which is simplified by the adoption of advanced v = η + χ and retarded u = η − χ null
coordinates (v, u, xA). Note that the AKV is evaluated at I +, attained when r → ∞ with
u = u0 fixed. That is, the integration in (5.6) is along an outgoing null geodesic du = 0.
Therefore, in null coordinates,

dr =
∂r

∂v
dv =

A

2

[
cosh v − cosh

v − u

2

]
dv = A [cosh(η + χ)− coshχ]dχ,

so that the angular components of the AKV are

ζA = Y A −DAf

∞∫
r

dχ csch2 χ+O
(
1/r3

)
= Y A − 2

(
1

1− e−2χ(r)
− 1

)
DAf +O

(
1/r3

)
.

The coefficient C(r) of the DAf term vanishes faster than any polynomial of O(1/rn); i.e.,
limr→∞C(r)O(rn) = 0 ⇐⇒ C(r) = O(e−r). This essential singularity means that, with
respect to the boundary conditions (5.5), the supertranslation AKV ζT is trivial on I +,
and the usual group of supertranslation AKVs (5.6) is not recovered.

23



6 Results and Discussion

This project sought to investigate the asymptotic structure and symmetries of a class
of FLRW spacetimes, extending the analysis usually applied in the literature to asymp-
totically Minkowski spacetime. The dust-filled open FLRW universe was shown to be
asymptotic to the Milne universe, suggesting that it may be asymptotically flat to the
future, in an appropriate sense. Toward the goal of making this sense more concrete, the
Bondi–Sachs flatness of the open FLRW universe was compared to spatially flat FLRW
universes, along with the rate of decay of null geodesic deviation, as approximate indicators
of asymptotic behaviour.

We determined that no FLRW universe was asymptotically flat in the sense of Bondi–
Sachs, and found the degrees to which the studied open and spatially flat FLRW universes
failed the criterion. The spatially hyperbolic (open) FLRW universe was found to be
‘flatter’ than any spatially flat FLRW model governed by a linear equation of state: its
metric components deviate from O(1) along outgoing null geodesics as O(ln r), versus
O
(
rq/2

)
, q > 0 in the spatially flat case. The physical significance of this preliminary result

is subtle and warranted further study.
The asymptotic deviations of null geodesics in such FLRW spacetimes were computed

to leading order and compared. We found the spatially flat FLRW universes to be charac-
terised by a falloff rate of O(1/t2), and the dust-filled spatially hyperbolic FLRW universe
by a faster falloff of O(1/t3). To a first approximation, the latter compares to the O(1/t3)
falloff in the Schwarzschild geometry (which is Bondi–Sachs asymptotically flat), despite
relevant differences in the type of curvature. While the dust-filled open FLRW universe is
purely Ricci curved, the curvature of the vacuum Schwarzschild geometry is purely Weyl
(as are the asymptotically flat spacetimes generally considered in the literature, taken suf-
ficiently far from sources). An observer only able to measure the evolution cross section
of a beam of light would be able to distinguish the Schwarzschild geometry from the spa-
tially hyperbolic FLRW universe by measuring shearing of the beam or taking into account
higher-order terms. However, to first approximation, the rates of decay of null geodesic
deviation are equivalent. This further motivates the categorisation of the open FLRW
universe as ‘asymptotically flat’ in a new sense.

The asymptotic region of spacetime was defined more precisely in the Bondi–Sachs
formalism, and the topologies of past and future null infinity were established for the
class of FLRW universes in question. We compactified the open FLRW universe, and
showed that the FLRW universes possess future null infinities I + of the same topology as
Minkowski space. This lead to the inspection of the asymptotic symmetries of I +.

Based off the existence of I +, Kehagias et al. [5] argue non-rigorously that the asymp-
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totic symmetry group of decelerating spatially flat FLRW universes is identically the BMS
group of asymptotically flat spacetime. We explicitly computed the asymptotic Killing
vectors of these universes, and of the open FLRW universe, in accordance with the more
explicit formulation of asymptotic symmetries in terms of the asymptotic Killing equation,
as described in [3, 21, 26]. We found that the AKVs of decelerating spatially flat FLRW
universes differ to the asymptotically flat case by a term of order O

(
1/rh

)
in the angular

components, where 0 < h < 1 depends on the matter’s equation of state. This results in
a AKV whose norm becomes infinite as r → ∞, revealing that the group of AKVs at I +

is inequivalent to the asymptotically flat case. This does not necessarily mean that decel-
erating spatially flat FLRW universes do not admit the exact BMS group of asymptotic
symmetries; the relationship between AKVs and physically relevant asymptotic symmetries
is subtle, and is the natural next step in this inquiry. It is conceivable that a different choice
of boundary conditions δgab would yield a group of AKVs which leads to an asymptotic
symmetry group equivalent to the BMS group, consistent with Kehagias et al.

Contrary to the spatially flat case, the dust-filled spatially hyperbolic FLRW universe
was found to admit a supertranslation AKV whose angular components vanished as O(e−r).
This means that the action of supertranslations is trivial on I + in the open FLRW uni-
verse, strongly suggesting that the BMS group does not arise in a physically significant
way. For this reason, if a notion of asymptotic ‘future’ flatness were to be defined which
included the spatially hyperbolic open FLRW universe as an example (and encapsulated its
‘flat-like’ properties discussed earlier), then it would be qualitatively different from Bondi–
Sachs asymptotic flatness—at least to the degree that the BMS group does not arise in
such a spacetime. This may indicate a differing nature of gravitational memory in such
universes. However, the link between AKVs and asymptotic symmetries is required to
make this rigorous.

Further research should include: (i) a proper analysis of the relationship between asymp-
totic Killing vectors, asymptotic symmetries, and their associated physical charges; and
(ii) further investigation into the physical motivation behind the boundary conditions used
to define the asymptotic Killing equation, and their affect on the resulting group of AKVs.
The gravitational memory effect is directly linked to the charges associated with asymp-
totic symmetries, and these depend intimately on the prescription of boundary conditions.
The theme of the open FLRW universe being regarded as ‘asymptotically flat’ should also
be made more precise—concretising this notion was one of the original intentions behind
this investigation. Looking forward, this path of research may ultimately lead to insight
into the nature of gravitational memory in more general spacetimes.
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A Geodesic Deviation in Schwarzschild
Spacetime

The Schwarzschild geometry in Cartesian isotropic coordinates (t, x, y, z) =: (t, xi) is

ds2 = −
(
1−m/r

1 +m/r

)2

c2dt2 +
(
1 +

m

r

)4

δijdx
idxj,

where m := rs/4 = GM/2 in terms of the Schwarzschild radius rs or mass M of the black
hole. We are interested in the order with which the geodesic deviation

ξ̈ :=
D2ξµ

dλ2
= Rµ

ρσνP
ρP σξν (A.1)

of null geodesics xµ(λ) with tangent vector P µ depends on r :=
√

δijxixj. Taking advantage
of spherical symmetry, we may assume that P is in the zt-plane, and that the separation
vector ξ connecting nearby geodesics is proportional to ∂x. Requiring ∥P∥ = 0 implies

P ∝ r +m

r −m
∂t +

r2

(m+ r)2
∂z,

and with ξ ∝ ∂x, the geodesic deviation equation (A.1) reduces to a summation on two
indices only,

D2ξx

dλ2
= Rx

ρσxP
ρP σξx (no sum on x).

(We expect ξ̈y = ξ̈z = 0 on the basis of spherical symmetry, and discard ξ̈z since we are
interested in the area of a beam of area A = (ξx)2.) The relevant components of the
Riemann tensor with respect to the Cartesian isotropic coordinate frame are1

Rx
ttx =

2(3 cos2 ϕ sin2 ϕ− 1)(m− r)2mr3

(m+ r)8
, Rx

zzx = −2(3 sin2 ϕ sin2 θ − 1)m

(m+ r)2r
,

where x = r sin θ cosϕ, y = r sin θ sinϕ and z = cos θ. Evaluated at a distance r along the
x-axis (r, θ, ϕ) = (r, π/2, 0), the geodesic deviation of light rays in the radial component is

ξ̈ =
6mr5

(m+ r)8
∂x = O

(
1/r3

)
. (A.2)

As r → ∞ along outgoing null rays, (A.2) is equivalently O(1/t3), since ct/r → 1.
1Computed with SageMath, an open-source mathematics software system under the general public

license with differential geometry capabilities; see http://www.sagemath.org/.
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B AKVs of Asymptotically Minkowski
Spacetime

Here, the asymptotic Killing vectors (AKVs) satisfying

Lζgab = δgab (B.1)

of asymptotically Minkowski spacetime are derived, where δgab are required to preserve the
Bondi gauge (see section 3.1),

grr = δgrr = 0 grA = δgrA = 0 ∂r det
(
gAB/r

2
)
= gABδgAB = 0

and to satisfy the boundary conditions

guu = −1 +O(1/r), gur = −1 +O
(
1/r2

)
, guA = O

(
1/r2

)
, gAB = r2qAB +O(1),

(B.2)

as prescribed by BMS (see [3, §5.2.1]). Taking advantage of the Bondi gauge, the rr-
component of the AKV equation (B.1) is Lζgrr = 0. Expanding the Lie derivative,

Lζgrr = grr,σζ
σ + 2gσrζ

σ
,r = 2gurζ

u
,r = 0 =⇒ ζu = f(u, xA) . (B.3)

Similarly, the rA-components yield, using (B.3),

0 = LζgrA =
[
r2qAB +O(1)

]
ζB,r +

[
−1 +O

(
1/r2

)]
f,A

where DAf = f,A denotes the covariant derivative on the 2-sphere. Let n in ζB = O(rn)
be the yet unknown falloff rate of ζB. Note that O(1/r2)ζB,r = O(rn−3), so that, solving
for ζB,r by contracting with qCA, we have

qCAqABζ
B
,r +O

(
rn−3

)
=

1

r2
DCf +O

(
1/r4

)
.

Upon integrating, with Y A = Y A
(
u, xA

)
as constants of integration,

ζA +O
(
rn−2

)
= Y A − 1

r
DAf +O

(
1/r3

)
.

From ζA ≡ O(rn) and (B.4), O(rn) = O(1/r3) + O(rn−2), so n = max {−3, n− 2} =⇒
n = −3, so we may drop the O(rn−2) term in (B.4).

ζA = Y A − 1

r
DAf +O

(
1/r3

)
(B.4)
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Finally, the r-component of ζ may be found by using the fact that, in the Bondi gauge,
∂r det (gAB/r

2) = 0, which is equivalent to gABLζgAB = 0. The AB-components of (B.1)
are

LζgAB = gAB,σζ
σ + 2gσ(Aζ

σ
,B)

= 2rqABζ
r + r2qAB,Cζ

C + 2r2qC(Aζ
C
,B) +O(1).

Note that ζu = f
(
u, xA

)
= O(1), and gAB = r2qAB +O(1) ⇐⇒ gAB = 1

r2
qAB +O(1/r4).

0 = gABLζgAB =
1

r2
qABLζgAB +O

(
1/r4

)
=

2

r
qABqABζ

r + qABqAB,Cζ
C + 2qABqCAζ

C
,B +O

(
1/r4

)
=

4

r
ζr + qABqAB,Cζ

C + 2ζA,A +O
(
1/r4

)
. (B.5)

The middle two terms in (B.5) may be rewritten in terms of the covariant derivative on
the 2-sphere, using

qAB
(
qAB,Cζ

C + 2qC(Aζ
C
,B)

)
= qABL (q)

ζ qAB = 2qABDAζB = 2DAζ
A

where the Lie derivative is on the 2-sphere only, and the second equality is Killing’s equation
on the 2-sphere. Finally, substituting (B.4), we obtain

ζr = −r

2
DAY

A +
1

2
D2f +O

(
1/r3

)
.

Hence, the general unconstrained AKV is

ζ = f∂u +

[
−r

2
DAY

A +
1

2
D2f +O

(
1/r3

)]
∂r +

[
Y A − 1

r
DAf +O

(
1/r3

)]
∂A.

Now we further constrain the forms of f
(
u, xA

)
and Y A

(
u, xC

)
by enforcing the bound-

ary conditions (B.2). The ur-component of (B.1) yields

O
(
1/r2

)
= Lζgur = gσrζ

σ
,u + guσζ

σ
,r

= gurζ
u
,u + gurζ

r
,r + guAζ

A
,r

= −f,u −
1

2
DAY

A +O
(
1/r2

)
This implies f,u = 1

2
DAY

A +O(1/r2), or (remembering that f = f
(
u, xA

)
) is independent

of r,

f
(
u, xA

)
= T

(
xA

)
+

u

2
DAY

A +O(1/r).
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Finally, the uA-components lead to

O(1) = LζguA = guA,σζ
σ︸ ︷︷ ︸

≤O(1)

+gσAζ
σ
,u + guσζ

σ
,A

=�����:O(1)
guAζ

u
,u + gBAζ

B
,u + guu ζ

u
,A︸︷︷︸

O(1)

+gurζ
r
,A + guB︸︷︷︸

O(1)

ζB,A +O(1)

=
(
r2qBA +O(r)

)[
Y A

,u −
1

r
f,

A
u

]
+
(
−1 +O

(
1/r2

))[r
2

(
DBY

B
)
,A
− 1

2

(
D2f

)
,A
+O

(
1/r2

)]
+O(1)

= r2qABY
A
,u +O(r).

So we have r2YA,u = O(r), which implies Y A
,u = 0, i.e., that Y A = Y A

(
xB

)
are functions

of the 2-sphere.
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