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Abstract

The band structure of a crystal contains a wealth of information about its electrical and
material properties, and is of great interest in material science. However, generating a band
structure diagram is a complex task and relevant software and documentation remain rel-
atively inaccessible. This report aims to make band structure computations immediately
accessible by 1) presenting an overview of the relevant theory and 2) outlining a work-flow
using the open-source molecular dynamics software CP2K. The band structure of monocrys-
talline silicon is computed with CP2K for various choices of exchange-correlation functional,
and the resulting band structure diagrams of Si and GaAs are qualitatively compared to
the literature. The project is done in the hope that it may jump-start other investigations
which are interested in or which could benefit from accessible band structure calculation.
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1 Introduction

The band structures of crystalline solids, including semiconductors and minerals, encode
information about many of the materials’ optical, mechanical and electronic properties. For
instance, the band structure of monocrystalline silicon reveals that it is a semiconductor
and that the bandgap is indirect. These properties are of great interest when designing
semiconductors for use in transistors, for example. Information about materials’ absorption
and emission spectra can be obtained from the band structure, which are of great interest
when designing LEDs and lasers [5].

This report serves as a guide to performing band structure calculations using the open-
source software package CP2K for quantum chemistry and solid state physics. An overview
of the theory underlying band structure calculations, density functional theory (DFT), is
presented in relation to CP2K in chapter 2. A guide to configuring CP2K input files and run-
ning them is given in appendix A. Provided with this report is a USB drive which contains
two Python scripts which were developed to 1) read CP2K band structure output and 2)
generate band structure diagrams. A working example CP2K input file for monocrystalline
silicon is also present, and all three files are reproduced in appendix B.

1.1 Background Band Theory
Quantum mechanics predicts that a bound electron exists in (a superposition of) discrete
orbitals of definite energy. For simplicity, consider a one-dimensional analogue of the
hydrogen atom, whose discrete energy states are 𝜓𝑛(𝑥), where 𝑛 is the principle quantum
number. If another hydrogen nucleus is introduced far away from the first, its associated
orbitals 𝜓′

𝑛(𝑥) will be identical to 𝜓𝑛(𝑥) except translated in space. If the two nuclei
are brought sufficiently close that their orbitals overlap, the electron will exist in molecular
orbitals which are a combination of 𝜓𝑛(𝑥) and 𝜓′

𝑛(𝑥). For a given 𝑛, two molecular orbitals
will form; one of lower energy from an in-phase combination Ψ(+)

𝑛 (𝑥) ∝ 𝜓𝑛(𝑥)+𝜓′
𝑛(𝑥), and

one of higher energy from an anti-phase combination, Ψ(−)
𝑛 (𝑥) ∝ 𝜓𝑛(𝑥) − 𝜓′

𝑛(𝑥). If a third
hydrogen nucleus is introduced, a similar mixing effect will occur, resulting in a triplet of
molecular orbitals of slightly differing energies for each 𝑛.

If 𝑁 hydrogen nuclei are arranged in a one dimensional lattice, there will be 𝑁 distinct
molecular orbitals with closely spaced energies. Furthermore, the molecular orbitals will
begin to exhibit a definite periodicity (see figure 1.1). More precisely, they will begin to
take the form Ψ(𝑘)

𝑛 (𝑥) = 𝑒𝑖𝑘𝑥𝑢𝑛(𝑥) for some 𝑘, where 𝑢𝑛(𝑥) is some function with the
periodicity of the lattice. As 𝑁 becomes large, the 𝑁 distinct values of 𝑘 become ever
more closely spaced, so that in the limit 𝑘 varies continuously. Thus, we may identify each
molecular orbital by the principle quantum number 𝑛 (now called the band number) and
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Figure 1.1: Schematic of band phenomena arising in a one-dimensional array of hydrogen
nuclei. The vertical axis represents higher and lower energies of the purple molecular
orbitals (not to scale). As 𝑁 increases, the molecular orbitals (shown here for 𝑛 = 1) form
a dense energy band.

a wavenumber 𝑘.
This is the essence of Bloch’s theorem, which states that the energy eigenstates of an

electron in a periodic potential 𝑉 (𝒓) = 𝑉 (𝒓 + 𝑹), will have the form

𝜓𝑛𝒌(𝒓) = 𝑒𝑖𝒌𝒓𝑢𝑛(𝒓),

where 𝑢𝑛(𝒓) = 𝑢𝑛(𝒓 + 𝑹) shares the periodicity of the potential [5].
We may consider the energies associated with each eigenstate 𝜓𝑛𝒌(𝒓) as a function of

the wavevector 𝒌 to obtain the band structure.

�̂�𝜓𝑛𝒌(𝒓) = 𝐸𝑛𝒌𝜓𝑛𝒌(𝒓) ⟶ 𝐸𝑛(𝒌) (1.1)

Plotting 𝐸𝑛(𝒌) against 𝒌 for many band numbers 𝑛 results in a band structure diagram,
as in figure 1.2. This, 𝐸𝑛(𝒌) is the central object of interest concerning a crystal’s band
structure, and finding it boils down to solving the Schrödinger equation (1.1) for the entire
crystal. However, this proves to be difficult for real materials, since (1.1) as it stands
quickly becomes intractable for many electrons.
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Figure 1.2: An example band structure diagram of diamond generated with CP2K.
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2 Overview of Density Functional
Theory

The software CP2K is capable of computing band structures by using a numerical Gaussian
plane wave (GPW) method of solving the Kohn–Sham equations. This chapter will outline
the prerequisite theory and present a brief first-look of the Kohn–Sham equations and the
GPW method. The level of theoretical introduction is intended to be enough to enable
comfortable use and comprehension of the CP2K software.

2.1 The Quantum Many-Body Problem
To determine the properties of a general many-body quantum system, we are interested
in solving the Schrödinger equation �̂�Ψ = 𝐸Ψ with the system’s corresponding Hamil-
tonian �̂�. Treating the nuclei as point charges, this many-body Hamiltonian consists of
terms for the kinetic energies of the system’s 𝑁 electrons and 𝑀 nuclei, and the inter-
electron, electron–nuclear, and inter-nuclear Coulomb interactions (written here respec-
tively, in atomic units):

�̂� = −
𝑁

∑
𝑖=1

1
2∇2

𝑖
⏟

electron E.K.

−
𝑀

∑
𝑗=1

1
2𝑚𝑗

∇2
𝑗

⏟⏟⏟⏟⏟
nuclear E.K.

+
𝑁

∑
𝑖=1

𝑖−1
∑
𝑗=1

1
|𝒓𝑖 − 𝒓𝑗|⏟⏟⏟⏟⏟⏟⏟

inter-electron C.I.

− 1
2

𝑁
∑
𝑖=1

𝑀
∑
𝑗=1

𝑍𝑗
|𝒓𝑖 − 𝑹𝑗|⏟⏟⏟⏟⏟⏟⏟⏟⏟

electron–nuclear C.I.

+
𝑀

∑
𝑖=1

𝑖−1
∑
𝑗=1

𝑍𝑖𝑍𝑗
|𝑹𝑖 − 𝑹𝑗|⏟⏟⏟⏟⏟⏟⏟

inter-nuclear C.I.

(2.1)

In the non-relativistic regime, this Hamiltonian is exact—but complex. To simplify the
problem, we note that the nuclei are > 103 times more massive than—and experience
interactions of similar strength to—the electrons, and therefore are able to be considered
stationary on the electronic time-scale [8]. This decoupling of the nuclear and electronic
dynamics is known as the Born–Oppenheimer approximation, under which the system’s
Hamiltonian (2.1) reduces to:

�̂� = −
𝑁

∑
𝑖=1

1
2∇2

𝑖
⏟

electron E.K.

+
𝑁

∑
𝑖=1

𝑖−1
∑
𝑗=1

1
|𝒓𝑖 − 𝒓𝑗|⏟⏟⏟⏟⏟⏟⏟

inter-electron C.I.

+ 1
2

𝑁
∑
𝑖=1

𝑉 (𝒓)
⏞⏞⏞⏞⏞𝑀
∑
𝑗=1

−𝑍𝑗
|𝒓𝑖 − 𝑹𝑗|⏟⏟⏟⏟⏟⏟⏟⏟⏟

electron–nuclear C.I.

(2.2)
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However, the problem still remains practically intractable, for the following reasons [9]:

• The stationary wavefunction Ψ(𝒓1, ..., 𝒓𝑁) is a function of the positions of all 𝑁
electrons, or of the 3𝑁 coordinates. For bulk materials, 𝑁 ∼ 1026 and so an explicit
representation of Ψ is simply unwieldy.

• Since the Hamiltonian contains an inter-electron interaction term, the electrons’
wavefunctions are correlated, rendering it impossible to separate (2.2) into 𝑁 tractable,
single-body problems.

• The inter-electron interaction is too strong to be regarded as a perturbation treatable
with perturbation theory.

2.2 The Electron Density

A significant conceptual leap was made towards approximating the many-body problem by
Thomas and Fermi in the late 1920s, when the wavefunction Ψ(𝒓1, … , 𝒓𝑁) was replaced by
the electron density 𝜌(𝒓) as the central unknown variable. The electron density measures
the electron occupancy of the infinitesimal volume of space at 𝒓, and can be defined in
terms of the normalised 𝑁 -electron wavefunction as follows:

𝜌(𝒓) =
𝑁

∑
𝑖=1

∫ ∏
𝑗≠𝑖

d𝒓𝑗∣Ψ(𝒓1, … , 𝒓𝑖−1, 𝒓, 𝒓𝑖+1, … , 𝒓𝑁)∣2

= 𝑁∫d𝒓2 ⋯ d𝒓𝑁 ∣Ψ(𝒓, 𝒓2, … , 𝒓𝑁)∣2 (2.3)

The 𝑖th term in the sum is to be interpreted as the total probability density of the 𝑖th
electron being observed at location 𝒓. Since electrons are indistinguishable, each term in
this sum is identical, and hence the definition simplifies to the second line. This change
of perspective is beneficial because the electron density is a much simpler object than the
wavefunction, in the sense that it is only a function of space (3 d.o.f.) whereas the Ψ is a
function of the system’s configuration (3𝑁 d.o.f.).

At the same time, Thomas and Fermi proposed an approximate Hamiltonian in the
form of a functional of electron density, where they derived the kinetic energy term by
crude analogy with a uniform electron gas.

𝐻TF[𝜌] = 𝐶KE ∫d𝒓 𝜌(𝒓)5
3

⏟⏟⏟⏟⏟⏟⏟
kinetic energy

+ 1
2 ∫d𝒓 d𝒓′ 𝜌(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hartree energy

(inter-electron C.I.)

+ ∫d𝒓 𝜌(𝒓)𝑉 (𝒓)
⏟⏟⏟⏟⏟⏟⏟
external potential

(electron–nuclear C.I.)

(2.4)

However, in this form, Thomas–Fermi theory fails to predict any type of bonding between
atoms. Most of the error is due to the kinetic energy term, and because of the negligence
of quantum phenomena such the exchange and correlation interactions between electrons.
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2.3 The Hohenberg–Kohn Theorems
In 1964, another leap was made when Hohenberg and Kohn showed that an exact formu-
lation of the energy functional in terms of electron density was possible, by proving two
salient theorems relating to the electron density.

Theorem 1 (Hohenberg–Kohn) The groundstate electron density 𝜌0(𝒓) uniquely deter-
mines the external potential 𝑉 (𝒓) to within a constant.

Since both the potential 𝑉 [𝜌0] and number of electrons 𝑁 = ∫ d𝒓 𝜌0(𝒓) are determined by
the groundstate electron density, the system in question is totally specified by 𝜌0(𝒓). Thus,
the groundstate expectation value of any observable—including the total energy—may be
viewed as a functional of 𝜌0(𝒓), allowing us to write 𝐻[𝜌] ≡ ⟨Ψ[𝜌]|( ̂𝑇 + ̂𝑉 [𝜌])|Ψ[𝜌]⟩.

While this theorem asserts the existence of an exact total energy functional (which
Thomas and Fermi sought to approximate), its explicit form remains unknown [3]. How-
ever, we may split the exact energy functional into two terms; one an unknown functional,
and the other the contribution of the external potential:

𝐻[𝜌] = 𝐹[𝜌] + ∫d𝒓 𝜌(𝒓)𝑉 (𝒓)
⏟⏟⏟⏟⏟⏟⏟

external functional, 𝑉 [𝜌]

(2.5)

The functional 𝐹[𝜌] is unknown, but universal: it is the same for all 𝑁 -electron systems.
That which distinguishes the unique physical system is contained within 𝑉 [𝜌].

The second Hohenberg–Kohn theorem states a very powerful result concerning the total
energy functional.

Theorem 2 (Hohenberg–Kohn) The true groundstate electron density 𝜌0(𝒓) uniquely
minimises the energy functional, i.e., 𝐻[𝜌0] ≤ 𝐻[𝜌] for all physically-attainable 𝜌(𝒓).

Therefore, the groundstate properties of a many-electron system can be determined by
minimising 𝐻[𝜌] with respect to 𝜌(𝒓) subject to the constraint that ∫ d𝒓 𝜌(𝒓) = 𝑁 . This
minimisation can be accomplished through the method of Lagrange multipliers, yielding
an Euler-Lagrange equation involving 𝜌(𝒓) and a constant Lagrange multiplier 𝜇.

𝜇 = 𝛿𝐹 [𝜌]
𝛿𝜌 + 𝑉 (𝒓) (2.6)

If 𝐹[𝜌] was known, then (2.6) could be solved for 𝜌(𝒓) using an iterative numerical method.
However, approximations to 𝐹[𝜌] have had little success (e.g., (2.4) from Thomas-Fermi
theory) because the kinetic energy functional is problematic.

2.4 The Kohn–Sham Scheme
One year after the Hohenberg–Kohn theorems were published, Kohn and Sham [6] devised
a cunning method for approximating the groundstate density which avoided having to
estimate the kinetic energy functional. The method involves translating the system of many
interacting electrons into a fictitious auxiliary non-interacting system whose potential term

5



is chosen such that the auxiliary system’s solution yields the same groundstate density (and
thus exhibits the same properties) as the physical system. This is desirable because the
non-interacting kinetic energy functional is known.

More concretely, the method involves transforming (2.6), whose solution is the ground-
state density, into a system of single-electron Schrödinger-like equations, known as the
Kohn–Sham equations, which can be solved iteratively.

To transform the Euler–Lagrange equation (2.6), the universal functional is partitioned
into three terms:

𝐹[𝜌] = 𝑇s[𝜌] + 𝐸H[𝜌] + 𝐸XC[𝜌] (2.7)

The first two are known exactly, and the last is unknown but constitutes a small amount
of the total energy.

• 𝑇s[𝜌] is the exact kinetic energy of a non-interacting electron gas of density 𝜌(𝒓),

𝑇s[𝜌] = −1
2

𝑁
∑
𝑖=1

∫d𝒓 𝜓∗
𝑖 (𝒓)∇2𝜓𝑖(𝒓), (2.8)

where 𝜓𝑖(𝒓) are the wavefunctions of the 𝑁 non-interacting electrons.

• 𝐸H[𝜌] is the Hartree energy, which accounts for the majority of the inter-electron
interaction energy:

𝐸H[𝜌] = 1
2 ∫d𝒓 d𝒓′ 𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|

• 𝐸XC[𝜌] is an unknown exchange-correlation functional, which can be implicitly de-
fined as the difference between the exact kinetic energy 𝑇 [𝜌] and inter-electron in-
teraction 𝐸ee[𝜌] and the two previous terms.

𝐸XC[𝜌] = (𝑇 [𝜌] + 𝐸ee[𝜌])⏟⏟⏟⏟⏟⏟⏟
exact, unknown

− (𝑇s[𝜌] + 𝑉H[𝜌])⏟⏟⏟⏟⏟⏟⏟
approximate, known

In practice, this term is approximated—and with better success than direct approx-
imation of the kinetic energy, due to it accounting for less of the total energy.

Substituting (2.7) into (2.6) yields

𝜇 = 𝛿𝑇s[𝜌]
𝛿𝜌 +

𝛿𝐸H[𝜌]
𝛿𝜌

⏞⏞⏞⏞⏞⏞⏞
∫d𝒓′ 𝜌(𝒓′)

|𝒓 − 𝒓′| +𝛿𝐸XC[𝜌]
𝛿𝜌 + 𝑉 (𝒓) = 𝛿𝑇s[𝜌]

𝛿𝜌 + 𝑉KS(𝒓), (2.9)

where we define the Kohn–Sham potential:

𝑉KS(𝒓) = ∫d𝒓′ 𝜌(𝒓′)
|𝒓 − 𝒓′| + 𝛿𝐸XC[𝜌]

𝛿𝜌 + 𝑉 (𝒓)
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The new Euler–Lagrange equation (2.9) now resembles (2.6)—and it is important to keep
in mind that it is the same equation, only rearranged, so that both equations’ solutions
are the groundstate density 𝜌0(𝒓).

Equation (2.9) is the minimised solution to the following total energy functional of the
auxiliary system,

𝐻KS[𝜌] = 𝑇s[𝜌] + ∫d𝒓 𝜌(𝒓)𝑉KS(𝒓), (2.10)

in the same way that (2.6) is the minimisation of (2.5).
At this point, we note that since the auxiliary system consists of non-interacting

fermionic electrons, its solution takes the form of a totally-antisymmetric Slater deter-
minant,

ΨKS = 1√
𝑁!

det [𝜓1(𝒓1)𝜓2(𝒓2) ⋯ 𝜓𝑁(𝒓𝑁)]

≡ 1√
𝑁!

∏
𝜎∈𝑆𝑁

(−1)𝜎𝜓𝜎(1)(𝒓1)𝜓𝜎(2)(𝒓2) ⋯ 𝜓𝜎(𝑁)(𝒓𝑁),

where 𝑆𝑁 is the permutation group of 𝑁 objects, and (−1)𝜎 = 1 if the permutation 𝜎
is even and −1 if 𝜎 is odd. The Kohn-Sham wavefunction may be thought of as the
antisymmetrisation of a wavefunction of non-interacting particles, 𝜓1(𝒓1)𝜓2(𝒓2) ⋯ 𝜓𝑁(𝒓𝑁).
The electron density is therefore related to the Kohn–Sham wavefunction through

𝜌(𝒓) = 𝑁 ∫d𝒓2 ⋯ d𝒓𝑁 |ΨKS(𝒓, 𝒓2, ..., 𝒓𝑁)|2 =
𝑁

∑
𝑖=1

|𝜓𝑖(𝒓)|2. (2.11)

We may now write (2.10) in full, expanding 𝑇s[𝜌] with reference to (2.8) and 𝜌(𝒓) with
reference to (2.11), to find a Schrödinger–like equation take form.

𝑁
∑
𝑖=1

∫d𝒓 𝜓∗
𝑖 (𝒓)�̂�KS𝜓𝑖(𝒓) =

𝑁
∑
𝑖=1

∫d𝒓 𝜓∗
𝑖 (𝒓) [−1

2∇2 + 𝑉KS(𝒓)] 𝜓𝑖(𝒓)

Thus, we are left with 𝑁 independent Kohn–Sham equations.

𝐸𝑖𝜓𝑖(𝒓) = [−1
2∇2 + 𝑉KS(𝒓)] 𝜓𝑖(𝒓) (2.12)

Keep in mind that the these equations depend on the Kohn–Sham potential 𝑉KS(𝒓),
which itself depends on the groundstate density 𝜌0(𝒓). The wavefunctions and groundstate
density must be solved for self-consistently, using sophisticated numerical methods.

𝑉KS(𝒓) = 𝑉 (𝒓) + ∫d𝒓′ 𝜌0(𝒓′)
|𝒓 − 𝒓′| + 𝑉XC[𝜌0](𝒓)

𝐸𝑖𝜓𝑖(𝒓) = [−1
2∇2 + 𝑉KS(𝒓)] 𝜓𝑖(𝒓)

𝜌0(𝒓) =
𝑁

∑
𝑖=1

|𝜓𝑖(𝒓)|2
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2.5 The Gaussian Plane Wave Implementation
We have encountered the Kohn–Sham scheme for solving the quantum many body problem.
In order to solve the self-consistent Kohn–Sham equations numerically, computationally
efficient representations of the density 𝜌(𝒓) and wavefunctions 𝜓𝑖(𝒓) are needed. The
Gaussian plane wave (GPW) representation that CP2K implements uses plane waves and
contracted Gaussian-type orbitals to represent 𝜌(𝒓) and 𝜓𝑖(𝒓), respectively. The method
employs two different kinds of basis sets in order to benefit from the advantages of both,
resulting in an efficient implementation [10].

2.5.1 Plane waves and pseudopotentials
Since we are interested in regular crystals, the external potential is periodic, i.e.,

𝑉 (𝒓) = 𝑉 (𝒓 + 𝑹),
where 𝑹 is any integer combination of primitive lattice vectors. By Bloch’s theorem, the
solutions to Schrödinger’s equation for electrons in such a periodic potential have the form

𝜓𝑛𝒌(𝒓) = 𝑒𝑖𝒌𝒓𝑢𝑛𝒌(𝒓),
where 𝑢𝑛𝒌(𝒓) has the translational symmetry of the lattice. Each solution 𝜓𝑛𝒌(𝒓) is iden-
tified by two subscripts: the discrete band index 𝑛; and the wavevector 𝒌, with which
𝜓𝑛𝒌(𝒓) varies quasi-continuously.

Since |𝜓𝑛𝒌(𝒓)|2 = |𝑢𝑛𝒌(𝒓)|2 is periodic, the electron density is also periodic. Therefore,
plane waves of the form 𝜙𝑮(𝒓) = 𝑒𝑖𝑮𝒓, where 𝑮 is a 𝑘-vector in the principle Brillouin
zone, serve as a natural basis for the periodic density 𝜌(𝒓).

𝜌(𝒓) = ∫d𝑮 𝜌𝑮𝜙𝑮(𝒓)

We may discretise the Brillouin zone so that there are only finitely many coefficients 𝜌𝑮
to determine. Thus, we may represent the density 𝜌(𝒓) by its Fourier coefficients 𝜌𝑮.

𝜌(𝒓) = ∑
𝑮

𝜌𝑮𝜙𝑮(𝒓) (2.13)

The fewer the coefficients, the lesser the computational cost—but at the expense of accu-
racy.

A practical problem with the plane wave representation arises near atomic nuclei. In
the regions of the core (inner) electrons, 𝜌(𝒓) is large and forms a sharp cusp. In these
regions, many terms are required to achieve numerical convergence. However, the inner
shells of atoms in a lattice are tightly bound, and are hardly influenced by the presence of
neighbouring atoms. These core electron states can therefore be assumed to be known from
calculations of isolated atoms [5]. In fixing the core electron states, the valence electrons
are found to be moving in an effective potential (a.k.a., a pseudopotential) which is a sum
of the nuclear potentials and a contribution from the core electrons. The pseudopotential
method requires fewer plane waves to accomplish numerical convergence, and is therefore
more computationally efficient. However, the method relies on the existence of accurate
pseudopotentials, which must be computed and specified in CP2K input files separately.
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Figure 2.1: Illustration of the effect of the pseudopotential on the complexity of the solution.
The dashed blue lines show the true potential and true wavefunction, while the red lines
show the pseudopotential and its “simpler” solution, Ψpseudo. This requires fewer terms of
its Fourier series than Ψ∼ 𝑍

𝑟
to be represented accurately. (Image in public domain.)

2.5.2 Gaussian basis sets
The plane wave basis is not well-suited for representing electron wavefunctions. Instead,
CP2K uses contracted Gaussian-type orbitals (GTOs) as a basis. GTOs have the form

𝜓GTO(𝒓; 𝜎, 𝑙, 𝑨) = 𝑟𝑙𝑒−𝜎(𝒓−𝑨)2,

where 𝑙 is a shape factor and 𝑨 is the centre of the distribution. Contracted GTOs, 𝜑𝑖(𝒓),
are constructed as follows,

𝜑𝑖(𝒓; 𝑨) =
𝑁

∑
𝑗=1

𝑐𝑖𝑗𝜓GTO(𝒓; 𝜎𝑗, 𝑙𝑖, 𝑨),

where the four coefficients 𝑐𝑖𝑗, 𝜎𝑗, 𝑙𝑖, and 𝑁 collectively define each 𝜑𝑖(𝒓; 𝑨). Gaussian
basis functions are preferable for constructing the electron wavefunctions because they
can be localised at the atomic nuclei, like the wavefunctions themselves [11]. Contracted
Gaussian basis sets can be optimised to each atomic element and pseudopotential. CP2K
requires basis sets to be specified for each atomic kind when using the Gaussian plane wave
method to perform DFT computations.

9



3 Comparison to the Literature

3.1 Band Structure of Si
Monocrystalline silicon has a diamond-cubic structure, with a lattice constant 𝑎Si =
5.431 Å, primitive lattice vectors

𝒂 = 𝑎Si
2

⎡
⎢
⎣

0
1
1
⎤
⎥
⎦

, 𝒃 = 𝑎Si
2

⎡
⎢
⎣

1
0
1
⎤
⎥
⎦

, 𝒄 = 𝑎Si
2

⎡
⎢
⎣

1
1
0
⎤
⎥
⎦

,

and unit basis Si (0, 0, 0) (1
4 , 1

4 , 1
4). The band structure of mono-Si is well very studied,

and its bandgap is known to be 1.12 eV [4, 7]. Its band structure was computed using
the Kohn–Sham scheme as implemented in CP2K, along the standard 𝑘-path L–Γ–X–U|K–
Γ. The computation was repeated for different choices of exchange-correlation functional,
and a qualitative comparison of the results is shown in figure 3.1. See mono-Si.inp in
appendix A for the CP2K input file that was used for the computation with the Perdew–
Burke–Ernzerhof (PBE) functional. All original band structure diagrams were generated
with the scripts provided in appendix B.2.

The most successful exchange-correlation functional of the ones that were trialled was
determined to be the PBE functional, which belongs to the class of generalized gradient
approximation (GGA) functionals. GGA functionals are generally the best for applications
in solid state physics [8].

A mono-Si band structure diagram published in Chelikowsky, 1974 [1] was replicated
with CP2K using the PBE functional and the results are shown side-by-side in figure 3.3.
The four-electron pseudopotential GTH-PBE-q4 and basis set DZVP-GTH-PBE were used, both
of which are optimised for the PBE functional. The resemblance is remarkable; there is
a clear correspondence between equivalent bands in the two diagrams, and all qualitative
features are reproduced. Both diagrams underestimate the bandgap by ∼ 21%.
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Figure 3.1: Comparison of band structures for monocrystalline silicon arising from different choices of 𝐸XC[𝜌]. The local density
approximation (LDA) functional predicts a bandgap of 0.793 eV, and Perdew–Burke–Ernzerhof (PBE) predicts 0.896 eV. No bandgap
is predicted in the Thomas–Fermi model or if the exchange-correlation term is simply omitted from the Kohn–Sham potential.
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3.2 Band Structure of GaAs
Gallium arsenide, a III–V direct bandgap semiconductor, has the same lattice vectors as
silicon, but with lattice constant 𝑎GaAs = 5.6535 Å and unit basis Ga (0, 0, 0) As (1

4 , 1
4 , 1

4).
The band structure of GaAs was computed using various exchange-correlation functionals,
and again, the PBE functional yielded the best results. For gallium, the three-electron
GTH-PBE-q3 pseudopotential was used, and for arsenide, the five-electron GTH-PBE-q5 pseu-
dopotential was used. The basis sets were not necessarily optimised for the PBE functional
and these pseudopotentials: different basis sets were simply tried until CP2K was able to
successfully solve the system.

Figure 3.2 compares the resulting diagram to Krüger, 1993 [7]. The similarity is
striking—however, there are some features that CP2K failed to reproduce.

1. The predicted fundamental bandgap is ∼ 50% the size of the bandgap quoted by
Krüger,

2. The predicted gap between the first and second bands is ∼ 37% larger than quoted
by Krüger,

3. There is no predicted gap between the second and third bands at the Γ point and
between the fifth and sixth bands at the X point,

4. There is no clear splitting of the third and fourth bands near the L point.

L X U|K
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E n
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[e
V]

GaAs (PBE XC-functional)

Figure 3.2: (Left) Band structure of GaAs compared to (right) published result [7]. The
predicted bandgaps are 0.724 eV (left) and 1.45 eV (right) compared to the true value of
1.521 eV.
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Figure 3.3: (Top) Band structure of mono-Si computed with mono-Si.inp compared to
(bottom) published semi-empirical band structure [1]. The predicted bandgaps are 0.896 eV
(top) and ∼ 0.88 eV (bottom) compared to the true value of 1.12 eV.
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4 Conclusions

Band diagrams for silicon and gallium arsenide were successfully produced with CP2K yield-
ing close agreement to published literature. The most notable discrepancy was systematic
underestimation of the fundamental bandgap—which is a well known problem of density
functional theory. The Perdew–Burke–Ernzerhof exchange-correlation functional proved
to be the most accurate for both these simple semiconductors; however, not all exchange-
correlation functionals implemented in CP2K were compared, and only their default config-
urations were considered.

A deeper understanding of the advantages and disadvantages of the various pseudopo-
tentials, basis sets and exchange-correlation functionals would benefit the quality of re-
sults obtained with CP2K. Further directions of inquiry could include how to specify crystal
defects or medium boundaries in CP2K, making possible information-rich band structure
computations for many more interesting systems.
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A Using the CP2K Software Package

CP2K is an open source software package which can be found at https://www.cp2k.org.
A working copy of CP2K version 7.0 (development version) was installed on the Physics
Department server physhpc2 in December, 2018. The program may be accessed via ssh
remote login from any machine connected to the university’s network. Consult the Physics
and Astronomy departments’ I.T. manager (room 322 of the Ernest Rutherford Building
as of early 2019) for further instructions on how to set up a remote login.

Once connected to physhpc2, the CP2K program is located at /usr/local/bin/cp2k
and should be able to be invoked with the command CP2K. Run the command cp2k -v to
verify the installation; the versions description should be printed to the console. Official
documentation can be found at https://manual.cp2k.org/, although it is very terse and
not helpful as an introduction to the software. More helpful unofficial documentation
(including lecture slides and theses) can be found at https://www.cp2k.org/docs.

A.1 Running CP2K

CP2K is a command-line program which takes an input file (conventionally ending with
.inp) and writes to an output file (conventionally ending with .out) and zero or more
other output files. To perform the computations specified by the input file project.inp
and write the output to project.out, the following command may be used:
cp2k -i project.inp -o project.out

Alternatively, to simultaneously write the output to a file and monitor it in the console,
one may use the following:
cp2k project.inp | tee project.out

The tee command pipes output from cp2k project.inp both to the console and to
project.out. This pattern of commands is better suited to interactive use.

Some CP2K programs reference other source files from within the main .inp file. Rel-
ative file-paths can be used, but for frequently used source files (such as basis sets and
pseudopotential definitions for various elements), CP2K will also search in the directory
specified by the environment variable $CP2K_DATA_DIR. To test whether the environment
variable is set, use the command echo $CP2K_DATA_DIR and its value (if any) will be shown.
Set this environment variable by inserting a line similar to
export CP2K_DATA_DIR='~/cp2k_data'

in the user’s ~/.bashrc to keep common CP2K source files organised in a single directory
irrespective of each .inp file’s location.
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A.2 Performing Band Calculations
CP2K input files contain keywords (e.g., KEYWORD) and parameters (e.g., PARAMETER value1
value2 ...) organised into sections (delimited with &SECTION and &END SECTION). Single-
line comments begin with a hash or exclamation point (# comment or ! comment).

A fully-commented minimal working example input file mono-Si.inp which computes
the band structure of monocrystalline silicon, is given in appendix B.1. The file includes
the following main sections:

• &GLOBAL: In which the project name and computation type are specified,

• &FORCE_EVAL: For parameters relating to computing energies and forces. This section
contains the following subsections:

• &SUBSYS: Contains the definition of the atomic system. In the example, this is
where the primitive cell of monocrystalline silicon is defined.

• &DFT: Section for performing density functional theory calculations and process-
ing the results, which includes the following subsections:

• &PRINT: Section specifying which data to output, containing one subsection:
• &BAND_STRUCTURE: Defines the 𝑘-path along which to sample and output

the band structure.

Other sections may be added to enable more features or to refine computations. A complete
index tree of all sections and their parameters can be found at https://manual.cp2k.org/
trunk/.

A.2.1 Defining the cell structure: The &SUBSYS section
With reference the example file mono-Si.inp in appendix B.1, the &SUBSYS section contains
a &CELL section which defines the primitive cell of monocrystalline silicon.

11 &CELL ## Unit cell parameters
12 A [angstrom] 0.000000 2.715475 2.715475
13 B [angstrom] 2.715475 0.000000 2.715475
14 C [angstrom] 2.715475 2.715475 0.000000
15 PERIODIC XYZ # Periodicity of the unit cell; in most cases, this should be

the same as &FORCE_EVAL/&DFT/&POISSON/PERIODIC↪
16 &END CELL

The parameters A, B, and C define the primitive lattice vectors, and PERIODIC XYZ enables
periodicity in all directions. The unit option [angstrom] can be substituted for [nm] or
[bohr]. The primitive cell is then populated with silicon atoms in the &COORD section:

22 &COORD ## Coordinates of atoms in primitive cell
23 SCALED # Relative to primitive lattice vectors
24 Si 0.00 0.00 0.00
25 Si 0.25 0.25 0.25
26 &END COORD
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It is important that the crystal is defined in terms of the primitive unit cell when doing
band calculations, as opposed to a diamond-cubic unit cell like the following:

1 &CELL
2 ABC [angstrom] 5.43095 5.43095 5.43095 # Simple cubic cell with mono-Si lattice

constant↪
3 PERIODIC XYZ
4 &END CELL
5 &COORD
6 SCALED
7 Si 0.00 0.00 0.00
8 Si 0.00 0.50 0.50
9 Si 0.50 0.00 0.50

10 Si 0.50 0.50 0.00
11 Si 0.25 0.25 0.75
12 Si 0.25 0.75 0.25
13 Si 0.75 0.25 0.25
14 Si 0.75 0.75 0.75
15 &END

This is because CP2K defines the reciprocal lattice vectors in terms of the given lattice
vectors A, B, and C; they are not reduced to primitive lattice vectors internally. Thus, if
a the silicon crystal is defined as above, then any 𝑘-points which are defined in terms of
the reciprocal lattice vectors (in, for example, &KPOINT_SET sections) will not correspond
to standard 𝑘-points which are seen in the literature, leading to confusing results. The
computation time is also reduced significantly when symmetry is taken the most advantage
of in using the primitive cell definition (for this example, the computation time is ∼ 6 times
shorted).

The &KIND subsection of &SUBSYS in which atom kinds are defined has not yet been
discussed; its role will be explained shortly.

A.2.2 Configuring the solver: The &DFT section
The Quickstep algorithm implemented by CP2K uses the mixed Gaussian plane wave
method to perform DFT calculations. The method relies on having suitable pseudopo-
tentials in order to achieve numerical convergence without the need of an unreasonably
large basis of plane waves. The method also requires that basis sets be defined.

Pseudopotentials and basis sets can be specified in the CP2K input file for each atomic
kind. However, it is generally easier to refer to a file containing many named pseudopo-
tentials or basis sets for various elements, and to specify by name which one to use for
each atomic kind. The parameters POTENTIAL_FILE_NAME and BASIS_SET_FILE_NAME lo-
cated in the &DFT section specify the path to such files (which should be placed in the
$CP2K_DATA_DIR directory).

A typical pseudopotential file contains many entries in a format similar to the following:

1 Si GTH-PBE-q4
2 2 2
3 0.44000000 1 -6.26928833
4 2
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5 0.43563383 2 8.95174150 -2.70627082
6 3.49378060
7 0.49794218 1 2.43127673

A typical basis set entry looks similar, containing coefficients for each basis orbital in the
set (see 2.5.2). The exact format for CP2K basis sets is described at https://www.cp2k.
org/basis_sets.

The particular pseudopotential and basis set is selected for each atomic kind in a
&SUBSYS/&KIND section. For instance, in the example file mono-Si.inp, the atomic kind of
silicon is defined like so:

17 &KIND Si ## Define a species of atom (repeated for each atom kind in cell)
18 # Selected basis set and pseudopotential from files specified in &FORCE_EVAL/&DFT
19 BASIS_SET DZVP-GTH-PBE
20 POTENTIAL GTH-PBE-q4
21 &END KIND

The “PBE” in the name DZVP-GTH-PBE specifies that the basis set is optimised for the
Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional. The name GTH-PBE-q4
is given to the silicon pseudopotential which has four valence electrons (q4) and is also
optimised for PBE.

The form of the exchange-correlation functional 𝐸XC[𝜌] to be implemented is specified in
the &DFT/&XC section. Since it is the only approximation used in the Kohn–Sham scheme,
this choice of exchange-correlation functional is what determines accuracy in practice.
There are many different exchange-correlation functionals programmed into CP2K with
different strengths and weaknesses, and many of them accept extra parameters so they
may be fine-tuned for each use case.

It is advisable that, in order to maximise accuracy in computations, the choice of
pseudopotential is one which is optimised for the current exchange-correlation functional,
and vice versa [2].

A.2.3 Getting band information: The &PRINT section
The &PRINT section is used to specify which data is to be printed to the output file or saved
to an external file. It contains one subsection, &BAND_STRUCTURE, which defines a path
in 𝑘-space along which the band structure is to be evaluated. The ADDED_MOS parameter
specifies how many conduction bands to include in the output, in addition to the occupied
valence bands. The FILE_NAME parameter specifies a file path to append the band structure
data to.

In addition to these, there are one or more &KPOINT_SET sections.

43 &KPOINT_SET ## Define a k-path linearly interpolating between defined
k-points↪

44 UNITS B_VECTOR # Coordinates are multiples of reciprocal lattice vectors
(1/Å)↪

45 SPECIAL_POINT L 0.500 0.500 0.500
46 SPECIAL_POINT Γ 0.000 0.000 0.000
47 SPECIAL_POINT X 0.500 0.000 0.500
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48 NPOINTS 50 # Number of interpolation points between each special k-point
49 &END KPOINT_SET

Each &KPOINT_SET section defines a 𝑘-path which linearly interpolates between particular
𝑘-points defined in order by SPECIAL_POINT parameters, each of which may take three
coordinates, or a 𝑘-point label and three coordinates. The NPOINTS parameter defines the
number of 𝑘-points to sample in each segment of the 𝑘-path. Multiple &KPOINT_SET sections
can be defined in order to vary the number of interpolation points between 𝑘-points.

An extremely helpful tool for finding and visualising 𝑘-paths and generating &KPOINT_SET
sections automatically is See𝑘-path, which is free to use at https://tools.materialscloud.
org/seekpath. For example, after inputting the primitive lattice vectors and unit basis for
GaAs, See𝑘-path suggests the 𝑘-path Γ—X—U|K—Γ—L—W—X—W2 and displays the
following visualisation of the path in the Brillouin zone:

20

https://tools.materialscloud.org/seekpath
https://tools.materialscloud.org/seekpath


B Code

B.1 Minimal Working CP2K Input File
Shown below is the example CP2K input file mono-Si.inp:

1 # You may define pre-compiler variables for organisational purposes like so:
2 @SET PROJECT mono-Si
3 &GLOBAL ## Global parameters
4 PROJECT ${PROJECT} # Project name; output files are prefixed with this
5 RUN_TYPE ENERGY # Kind of calculation; band structure calculations involve

computing energies↪
6 PRINT_LEVEL LOW # Level of detail of output
7 &END GLOBAL
8 &FORCE_EVAL ## Parameters for energy and force calculations
9 METHOD Quickstep # DFT calculations with the Gaussian plane wave method

10 &SUBSYS ## Define the atomic system
11 &CELL ## Unit cell parameters
12 A [angstrom] 0.000000 2.715475 2.715475
13 B [angstrom] 2.715475 0.000000 2.715475
14 C [angstrom] 2.715475 2.715475 0.000000
15 PERIODIC XYZ # Periodicity of the unit cell; in most cases, this should be

the same as &FORCE_EVAL/&DFT/&POISSON/PERIODIC↪
16 &END CELL
17 &KIND Si ## Define a species of atom (repeated for each atom kind in cell)
18 # Selected basis set and pseudopotential from files specified in &FORCE_EVAL/&DFT
19 BASIS_SET DZVP-GTH-PBE
20 POTENTIAL GTH-PBE-q4
21 &END KIND
22 &COORD ## Coordinates of atoms in primitive cell
23 SCALED # Relative to primitive lattice vectors
24 Si 0.00 0.00 0.00
25 Si 0.25 0.25 0.25
26 &END COORD
27 &END SUBSYS
28 &DFT ## Parameters for computations using density functional theory
29 # Files containing basis set and pseudopotential data (usually located in

$CP2K_DATA_DIR)↪
30 BASIS_SET_FILE_NAME BASIS_SET
31 POTENTIAL_FILE_NAME POTENTIAL
32 &POISSON
33 PERIODIC XYZ # Periodic boundary conditions for electrostatic

calculations; should be the same as &FORCE_EVAL/&SUBSYS/&CELL/PERIODIC↪
34 &END POISSON
35 &XC ## Parameters to configure the exchange-correlation functional
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36 &XC_FUNCTIONAL PBE # Perdew–Burke–Ernzerhof exchange-correlation functional
37 &END XC_FUNCTIONAL # This section contains no parameters; default settings for

the PBE XC-functional are used↪
38 &END XC
39 &PRINT ## Defines which parts of the DFT computation are printed or

saved to file↪
40 &BAND_STRUCTURE ## Sample the band structure along a k-path, defined below
41 ADDED_MOS 6 # Number of conduction bands to include
42 FILE_NAME ${PROJECT}.band # File in which to *append* band structure output

(note: does not replace or override file. Remove file before recomputing)↪
43 &KPOINT_SET ## Define a k-path linearly interpolating between defined

k-points↪
44 UNITS B_VECTOR # Coordinates are multiples of reciprocal lattice vectors

(1/Å)↪
45 SPECIAL_POINT L 0.500 0.500 0.500
46 SPECIAL_POINT Γ 0.000 0.000 0.000
47 SPECIAL_POINT X 0.500 0.000 0.500
48 NPOINTS 50 # Number of interpolation points between each special k-point
49 &END KPOINT_SET
50 &KPOINT_SET
51 UNITS B_VECTOR
52 SPECIAL_POINT X 0.500 0.000 0.500
53 SPECIAL_POINT U 0.625 0.250 0.625
54 NPOINTS 20
55 &END KPOINT_SET
56 &KPOINT_SET
57 UNITS B_VECTOR
58 SPECIAL_POINT K 0.375 0.375 0.750
59 SPECIAL_POINT Γ 0.000 0.000 0.000
60 NPOINTS 50
61 &END KPOINT_SET
62 &END BAND_STRUCTURE
63 &END PRINT
64 &END DFT
65 &END FORCE_EVAL

B.2 Scripts for Creating Band Structure Diagrams
Two python3 scripts are provided which assist with

1. (cp2k-band2csv.py) parsing band structure output produced by CP2K, and

2. (band-plotter.py) plotting the band structure in a band diagram using matplotlib.

The first script was adapted from https://github.com/dev-zero/cp2k-tools/blob/develop/
scripts/cp2k_bs2csv.py, and the latter was written for this project.

To use these utilities, ensure that the scripts have execute permissions (chmod +x *.py
adds execute permissions to all Python scripts in the current working directory) and then
run them as follows.

$ cp2k -i mono-Si.inp -o mono-Si.out # creates `mono-Si.band` file
$ ./cp2k-band2csv.py mono-Si.band # produces a set of .csv files
$ ./band-plotter.py mono-Si.band # plots an interactive band diagram
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B.2.1 cp2k-band2csv.py

1 #!/usr/bin/env python3
2 """
3 Convert the CP2K band structure output to CSV files.
4

5 This script was adapted by Joseph Wilson under PHYS493, 2019 from:
6 https://github.com/dev-zero/cp2k-tools/blob/develop/scripts/cp2k_bs2csv.py
7 It is free to use and modify.
8 """
9

10 import re
11 import argparse
12

13

14 SET_MATCH = re.compile(r'''
15 [ ]*
16 SET: [ ]* (?P<setnr>\d+) [ ]*
17 TOTAL [ ] POINTS: [ ]* (?P<totalpoints>\d+) [ ]*
18 \n
19 (?P<content>
20 [\s\S]*?(?=\n.*?[ ] SET:|$) # match everything until next 'SET' or EOL
21 )
22 ''', re.VERBOSE)
23

24 SPOINTS_MATCH = re.compile(r'''
25 [ ]*
26 POINT [ ]+ (?P<pointnr>\d+) [ ]+ (?P<label>not[ ]specified|\S+) [ ]+ (?P<a>\S+) [ ]+

(?P<b>\S+) [ ]+ (?P<c>\S+)↪
27 ''', re.VERBOSE)
28

29 POINTS_MATCH = re.compile(r'''
30 [ ]*
31 Nr\. [ ]+ (?P<nr>\d+) [ ]+
32 Spin [ ]+ (?P<spin>\d+) [ ]+
33 K-Point [ ]+ (?P<a>\S+) [ ]+ (?P<b>\S+) [ ]+ (?P<c>\S+) [ ]*
34 \n
35 [ ]* (?P<npoints>\d+) [ ]* \n
36 (?P<values>
37 [\s\S]*?(?=\n.*?[ ] Nr\.|$) # match everything until next 'Nr.' or EOL
38 )
39 ''', re.VERBOSE)
40

41

42 def convert_band2csv(file, basename):
43 """
44 Convert the input from the given input file handle and write
45 CSV output files based on the given pattern. Returns a list of
46 the special points.
47 """
48 special_points = []
49 for kpoint_set in SET_MATCH.finditer(file.read()):
50 filename = f'{basename}.set-%s.csv' % kpoint_set.group('setnr')
51 set_content = kpoint_set.group('content')
52
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53 with open(filename, 'w') as csvout:
54 print(f"writing point set {filename!r}"
55 " (total number of k-points: {totalpoints})"
56 .format(**kpoint_set.groupdict()))
57

58 print(" with the following special points:")
59

60 for point in SPOINTS_MATCH.finditer(set_content):
61 point = point.groupdict()
62 if point['label'] == 'not specified':
63 point['label'] = 'nolabel'
64 print(" {pointnr}) {label}\t < {a}, {b}, {c} >".format(**point))
65 special_points.append(point)
66

67 for point in POINTS_MATCH.finditer(set_content):
68 results = point.groupdict()
69 results['values'] = " ".join(results['values'].split())
70 csvout.write('{a} {b} {c} {values}\n'.format(**results))
71

72 return special_points
73

74

75 if __name__ == '__main__':
76 parser = argparse.ArgumentParser(description=__doc__)
77 parser.add_argument('bandfilename', metavar='bandstructure-file', type=str,
78 help="the band structure file generated by CP2K")
79

80 parser.add_argument('-k', action='store_true',
81 help="exports kpath with special point labels to CSV")
82

83 args = parser.parse_args()
84

85 kpath_filename = f'{args.bandfilename}.kpath.csv'
86 with open(args.bandfilename, 'r') as pointset_file:
87 if args.k:
88 # write special k-points to file
89 with open(kpath_filename, 'w') as kpath_file:
90 print(f"writing k-path to {kpath_filename!r}")
91 special_points = convert_band2csv(pointset_file, args.bandfilename)
92 for special_point in special_points:
93 kpath_file.write("{label} {a} {b} {c}\n".format(**special_point))
94 else:
95 convert_band2csv(pointset_file, args.bandfilename)

B.2.2 band-plotter.py

1 #!/usr/bin/env python3
2 """
3 Plot a band structure diagram from CSV point sets. See `cp2k-band2csv.py`
4 for how to the generate the CSVs from CP2K output.
5

6

7 This script was written by Joseph Wilson under PHYS493, 2019.
8 It is free to use and modify.
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9 """
10

11 import argparse
12 from glob import glob
13 import numpy as np
14 from matplotlib import pyplot as plt
15 from matplotlib.backends.backend_pdf import PdfPages
16

17

18 def get_plottable_data(pointsets, labelled_kpoints={}):
19 """
20 Convert the CSV data from point sets generated by `cp2k-band2csv.py`
21 into an easy-to-plot form, complete with special k-point x-labels.
22

23 Returns
24 """
25

26 xlabels = {}
27 xcoord = 0
28 xcoords = []
29 data = []
30 for pointset in pointsets:
31 for kcoord, bandvals in zip(pointset[:,:3], pointset[:,3:]):
32

33 # find kcoord label
34 for labelled_kcoord, label in labelled_kpoints.items():
35 # see if kcoord is equal to a labelled kcoord to within floating point precision
36 if np.allclose(kcoord, labelled_kcoord):
37 # kcoord is labelled
38 if xcoord in xlabels and xlabels[xcoord] != label:
39 xlabels[xcoord] += '|' + label
40 else:
41 xlabels[xcoord] = label
42 break
43

44 xcoords.append(xcoord)
45 data.append(bandvals)
46

47 xcoord += 1
48 xcoord -= 1 # have no horizontal gap between point sets
49

50 bands = np.array(data).T
51 return bands, xcoords, xlabels
52

53

54 def find_bandgaps(bands):
55 """
56 Finds the (finite) ranges of energy which contain no bands.
57 Uses the fact that the bands are ordered so that their
58 successive minima and maxima are non-decreasing.
59 """
60 gaps = []
61 upper = np.inf
62 for band in bands:
63 lower = band.min()
64 if upper < lower:
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65 gaps.append((upper, lower))
66 upper = band.max()
67 return gaps
68

69

70 def save_as_pdf(filename):
71 """
72 Export the figure as it appears to a PDF.
73 """
74 if not filename.lower().endswith('.pdf'):
75 filename += '.pdf'
76 pdf = PdfPages(filename)
77 pdf.savefig(fig)
78 pdf.close()
79 print(f"saved figure to {filename!r}")
80

81

82 if __name__ == '__main__':
83 parser = argparse.ArgumentParser(description=__doc__)
84 parser.add_argument('bandfilename', metavar='bandstructure-file', type=str,
85 help="the band structure file generated by CP2K. "
86 "This file isn't read, but used as the basename "
87 "to find associated csv files.")
88

89 args = parser.parse_args()
90

91 # load pointsets
92 pointset_pattern = f'{args.bandfilename}.set-*.csv'
93 pointsets = [np.loadtxt(f) for f in sorted(glob(pointset_pattern))]
94 if not pointsets:
95 raise parser.error(f"no point sets found: {pointset_pattern}")
96

97 # load kpath file, if it exists
98 try:
99 kpath_filename = f'{args.bandfilename}.kpath.csv'

100 kpath = np.loadtxt(kpath_filename,
101 dtype=[('label', '<U20'), ('a', float), ('b', float), ('c', float)])
102 labelled_kpoints = {tuple(kpoint): label for label, *kpoint in kpath}
103 except OSError:
104 print(f"kpath file {kpath_filename!r} not found. Plot will have no x-labels")
105 labelled_kpoints = {}
106

107 # convert data
108 bands, xcoords, xlabels = get_plottable_data(pointsets, labelled_kpoints)
109 bandgaps = find_bandgaps(bands)
110

111 if bandgaps:
112 # set zero level to the bottom of the highest band gap
113 highest_bandgap = bandgaps[-1]
114 print(f"highest bandgap: {highest_bandgap[1] - highest_bandgap[0]:5g} eV")
115 yoffset = -highest_bandgap[0]
116 else:
117 print(f"no bandgaps found")
118 yoffset = 0
119

120 # create figure window and axes
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121 fig, ax = plt.subplots()
122

123 # show k-path along x axis
124 sortedxticks = sorted(xlabels.keys())
125 ax.set_xticks(sortedxticks)
126 ax.set_xticklabels([xlabels[x] for x in sortedxticks])
127 for x in sortedxticks:
128 ax.axvline(x, c='k', lw=0.5)
129

130 # plot each band
131 for i, band in enumerate(bands):
132 ax.plot(xcoords, band + yoffset, c=plt.cm.rainbow(i/len(bands)))
133

134 # shade in the bandgap region
135 for lower, upper in bandgaps:
136 ax.axhspan(lower + yoffset, upper + yoffset, alpha=0.2)
137

138 ax.set_title(args.bandfilename)
139 ax.set_ylabel("$E_n(k)$ [eV]")
140 ax.set_xlabel("$k$")
141

142 ax.autoscale(tight=True, axis='x')
143 plt.tight_layout()
144

145 plt.show()
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