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Abstract

The standard model of particle physics suffers from the strong 𝐶𝑃 problem—the fine tuning
of the QCD ̄𝜃-parameter to the experimental value | ̄𝜃| ≲ 1 × 10−10. This review discusses the
theoretical background of QCD and of the strong 𝐶𝑃 problem, and describes its most famous
resolution: the Peccei–Quinn axion. The axion has wide-ranging implications for cosmology
and astrophysics, and up-to-date constraints of its properties from various laboratory and cos-
mological experiments are reviewed.
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0 Introduction

The Physics of NatuRe at the smallest and largest scales underwent a spectacular revolution
in the twentieth century. However, the last two decades have been troubled by a few espe-
cially stubborn mysteries, and fundamental physics seems to have stagnated. The last century
bore the standard model of particle physics and, in parallel, the general relativistic theory of
gravity. The essential incompatibility between the two calls for a major breakthrough which
still remains out of sight. Aside from this foundational issue, key unresolved problems include
the apparent need for dark matter in the standard model of cosmology, and the apparently un-
natural fine-tuning of the standard model of particle physics. One such issue of fine-tuning
is named the strong 𝐶𝑃 problem, pertaining to the unexplained time-reversal symmetry in
quantum chromodynamics (QCD), and the concomitant non-observation of the neutron’s elec-
tric dipole moment. One such resolution to this problem is named the Peccei–Quinn axion
solution.

The axion solution predicts the existence of a light, weakly interacting particle which natu-
rally restores time-reversal symmetry in QCD. Undoubtedly, extensions to the standard model
are more appealing when they resolve many existing issues with the same underpinning the-
oretical supposition. In this sense, the axion is an alluring solution to the strong 𝐶𝑃 problem,
potentially serving as a dark matter candidate, providing a mechanism for cosmic inflation or
even explaining baryogenesis [1]. The shortcoming is that it has never admitted any sign of
existence, despite extensive searches. Nevertheless, “physics thrives on crisis” as Weinberg put
it [2], and in the last two decades the axion has regained popularity.1 The axion has a remark-
able range of implications for particle physics, cosmology and astrophysics. Should it ever turn
out an accurate reflection of Nature, the axion would certainly reshape more than one area of
physics.

The focus of this pedagogical review is part theoretical and part phenomenological. The
first half is an overview of the theory underlying quantum chromodynamics, the strong 𝐶𝑃
problem and its axion solution. It begins assumingminimal familiarity with the standardmodel,
giving a high-level description of the mathematical structures involved, and ends with a basic
exposition of axion phenomenology. The second half is devoted to the implications of axions
in cosmology and astrophysics, and the tests and constraints they offer for axion models.

1The publication count on Inspire-HEP for the term “axion” has been exponentially growing since the new
millennium, doubling every 6.5 years.
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1 QCD and the Strong 𝐶𝑃 Problem

TheStandardModel of particle physics is a quantumfield theorywhich describes all known fun-
damental particles and interactions to very high precision—with notable exceptions including
the absence of gravity, dark matter, and the experimentally incorrect prediction that neutrinos
are massless. Alongside these shortcomings, the standard model also exhibits issues of a more
philosophical nature, such as the reasons for the values of the theory’s many free parameters.
(For example; why are there three generations of particles? Why do the particle masses and
coupling constants have the values they do?) Among these mysteries is the strong 𝐶𝑃 problem,
a fine-tuning problem regarding the apparent symmetry of the strong force under time rever-
sal.1 This chapter summarises the theory necessary to understand the statement and origin of
the strong 𝐶𝑃 problem.

The standard model was born amid the explosion of phenomenological particle physics in
the early 1960s, in an effort to explain the patterns in the rapidly growing catalogue of known
particles. The introduction of the quark model efficiently explained the properties of the nu-
merous hadrons in terms of six kinds of quarks possessing colour symmetry, and the theory
was given the name quantum chromodynamics (QCD). This, together with the well-established
quantum theory of electromagnetism, quantum electrodynamics (QED), became the first ap-
proximation to the standard model [3]. The modern statement of the standard model is that it
is a Lorentz-invariant quantum field theory whose gauge group is the compact connected Lie
group

(SU(3) ⊕ SU(2) ⊕ U(1))/Z6, (1.1)

equipped with a particular action on matter fields. A quantum field theory is a quantised
gauge field theory, which is a field theory whose Lagrangian is symmetric under the action
of the gauge group (explained more in § 1.1). Each term in the gauge group of the standard
model (1.1) corresponds to a fundamental force of Nature: The factor SU(3) is the gauge group
of quantum chromodynamics, the sector of the standard model describing the interactions of
colour-charged quarks and gluons via the strong force. The factor SU(2) ⊕ U(1) corresponds
to the unified electroweak force, and contains another U(1) sub-factor corresponding to the
electromagnetic force of QED.

Quantum chromodynamics was formulated quite some time after quantum electrodynam-
ics was understood, which is a reflection that QCD is more intricate than QED. Unlike QED,
quantum chromodynamics exhibits asymptotic freedom, meaning that the effective strength of
the strong interaction between colour-changed particles increases with increasing separation.

1Time reversal 𝑇 and charge–parity 𝐶𝑃 symmetry are equivalent assuming the combined charge–parity–time
symmetry; i.e., 𝑇 = 𝐶𝑃 mod 𝐶𝑃𝑇 .
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Thus, QCD is severely non-perturbative and evades even modern analytical treatment, except
at low energies. Asymptotic freedom also results in quark confinement, which contributed to
the confusion of particle physicists in the 1960s—quarks could never be observed in isolation.
The dissimilarity of QCD to QED can be largely credited to the fact that the gauge group SU(3)
is non-Abelian, implying that the gluon force carriers of QCD are themselves colour-charged,
leading to asymptotic freedom [4]. This is in contrast to the Abelian U(1) theory of QED, in
which the force carriers are uncharged photons. Despite the technical challenges which come
with its non-perturbative nature, quantum chromodynamics remains a successfully predictive
and elegant theory.

However, QCD comes with a challenge of theoretical concern: the strong 𝐶𝑃 problem, or
“why does QCD fail to forbid 𝐶𝑃 violation?” Since we do not observe 𝐶𝑃 symmetry violation
in QCD [5], we expect the theory to prohibit it—but a careful inspection of QCD reveals that it
does not. This problem proves to be of the fine-tuning variety, but it lacks even an anthropic
solution: it does not change the universe in dramatic ways whether 𝐶𝑃 symmetry is broken in
the QCD sector or not (as we so observe). Instead, the disparity indicates a deeper theoretical
shortcoming, and provides good reason to pursue physics beyond the standard model.

This chapter fills in the background relevant to the formal statement of the strong 𝐶𝑃 prob-
lem, and assumes surface-level familiarity with differential geometry, Lagrangian mechanics,
quantum mechanics and the notation of exterior calculus. The significance and role of the
gauge group is outlined in the next section, where a geometrical overview of gauge field theory
is presented (primary sources are [6], [7] and [8]). This overview aims to provide a basic un-
derstanding of the main mathematical objects—or ‘moving parts’—of a gauge field theory, and
of their physical interpretations. The chapter later introduces further concepts specific to QCD
and the strong 𝐶𝑃 problem as they become relevant. Finally, QCD is defined and the origin of
the so-called strong 𝐶𝑃 problem is highlighted.

1.1 Overview of Classical and Quantum Gauge Theory

Gauge theories take place on a spacetime manifold and consist of two mathematically distinct
dynamical entities: a matter field and a gauge field. A classical gauge theory is completely
specified by the prescription of four ingredients: the base manifold ℳ; the vector space 𝑉 in
which thematter field 𝝍 takes its values; a gauge group 𝐺 equipped with an action on thematter
field; and equations of motion, usually supplied via a Lagrangian density ∼ℒ. The dynamical
gauge field is not prescribed at the outset—it arises naturally as a consequence of the matter
field’s symmetry under the action of the gauge group.

The underlying premise of gauge theory is that there may be physical redundancy in the
mathematical description of amatter field at each point in spacetime. (For example, the complex
phase of a total wavefunction is physically irrelevant.) This redundancy results in non-physical
degrees of freedoms of the matter field at every point in spacetime: these are called local gauge
freedoms. (Keeping with our example: a local rotation of phase is a gauge freedom.) Crucially,
local gauge freedoms introduce ambiguity in the notion of the physical rate of change of a mat-
ter field about a point. This is because the point-wise independence of the matter field’s gauge
freedom means that differences in the field’s value between nearby points is gauge-dependent.
In other words, there is no preferred directional derivative of a matter field if a local gauge
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Notations used in this chapter

A,B, ... matrices
𝒜, ℬ, ... objects with manifold structure

↣; ↠; ↔ injection; surjection; bijection
𝐹 ↣ 𝒱 𝜋↠ ℳ fibre bundle 𝒱 over base space ℳ with fibre 𝐹 and projection 𝜋 ∶ 𝒱 ↠ ℳ
T𝑝ℳ; Tℳ tangent space at 𝑝 ∈ ℳ; tangent bundle of ℳ

T𝑟
𝑠ℳ type ( 𝑟𝑠 ) tensors over ℳ, equal to (⨂𝑟

𝑖=1 Tℳ) ⊗ (⨂𝑠
𝑖=1 T∗ℳ)

Tℳ tensor bundle of ℳ, equal to ⨁∞
𝑟,𝑠=0 T𝑟

𝑠ℳ
∼𝐴 spacetime tensor field; i.e., a section of Tℳ
𝑨 vector field of some abstract vector space not contained in Tℳ
∼𝑨 spacetime tensor field with values in some other abstract vector space

∧𝑝𝑉 𝑝th exterior power of the vector space 𝑉 ; i.e., the space of 𝑉 -valued 𝑝-forms
Γ(𝒱) smooth sections ℳ → 𝐹 of fibre bundle 𝐹 ↣ 𝒱 ↠ ℳ

Ω𝑝(ℳ) space of 𝑝-forms on ℳ, equal to Γ(∧𝑝T∗ℳ)
Ω𝑝(ℳ, 𝑉 ) space of 𝑉 -valued 𝑝-forms, equal to Γ(𝒱 ⊗ ∧𝑝T∗ℳ) where 𝑉 ↣ 𝒱 ↠ ℳ

freedom is present—until the choice of a connection is made. The triumph of gauge theory is
that, by introducing the gauge field to act as a connection, this ambiguity is recast as a separate
set of physical degrees of freedom. The implications of this are twofold: Firstly, the gauge field
isolates a choice of derivative (namely, the covariant derivative with respect to the gauge field),
allowing the inclusion of well-defined derivatives of the matter field in the theory’s equations
of motion. Secondly, the gauge field has a dynamical role in the theory, and it describes a new
kind of field: force fields (and, after quantisation, force carrier bosons).

In geometrical language, the matter field 𝝍 ∈ Γ(𝒱) is a section of a vector bundle 𝑉 ↣
𝒱 ↠ ℳ. In other words, at any point 𝑝 ∈ ℳ in spacetime, the field continuously assigns
a vector, 𝝍|𝑝 ≅ 𝑉 .2 The gauge transformations of 𝝍|𝑝 at a point 𝑝 form a group 𝐺 under
composition—but this group does not describe local gauge transformations which act on the
entire field 𝝍. Rather, the total space of local gauge transformations is a principle 𝐺-bundle
𝐺 ↣ 𝒢 ↠ ℳ, consisting of smooth maps ℳ → 𝐺.3 The action of 𝒢 on the space of matter
fields 𝒱 may be denoted

𝝍
𝑔

↦ 𝝍′ = 𝑔 ⋅ 𝝍

for 𝝍 ∈ Γ(𝒱) and 𝑔 ∈ Γ(𝒢) (i.e., 𝝍 ∶ ℳ → 𝑉 and 𝑔 ∶ ℳ → 𝐺). This specification of an
action “⋅” of 𝒢 on the vector bundle 𝒱 is equivalent to the choice of a linear representation
𝜌 ∶ 𝐺 → End(𝑉 ) of 𝐺 on 𝑉 , applied globally on ℳ. Thus, we may write the action as a matrix
product, 𝑔 ⋅ 𝝍 = 𝜌(𝑔)𝝍 ≡ 𝑔𝜌𝝍, remembering that both 𝝍 and 𝑔 (but not 𝜌) vary across ℳ.

It is worth emphasising that all gauge theories are isomorphic to a gauge theory possessing
only one matter field 𝝍total with one gauge group (𝐺, 𝜌). For instance, if a theory consists of
different fundamental particles and forces, represented by separate fields 𝝋 and 𝝓 with gauge

2The reason many objects in gauge theory (such as fields 𝝍) are defined as sections of fibre bundles (and not
simply as smooth maps 𝝍 ∶ ℳ → 𝑉 ) is because fibre bundles are themselves smooth manifolds which admit the
construction of connections (whereas the space of smooth functions lacks a manifold topology).

3We sometimes loosely refer to the fibre group 𝐺 as the gauge group, but strictly we mean the fibre bundle 𝒢
(following [7]).
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groups (𝐺𝜑, 𝜌𝜑) and (𝐺𝜙, 𝜌𝜙), then we may take the total matter field 𝝍total = 𝝋 ⊕ 𝝓 to be
the direct sum of the fields in the theory, and similarly equip it with the gauge group 𝐺total =
𝐺𝜑⊕𝐺𝜙 with representation 𝜌total = 𝜌𝜑⊕𝜌𝜙. This new theory, inheriting the original equations
of motion, is physically identical to the original. In full generality, therefore, we treat our theory
as possessing one matter and one gauge field, while freely speaking of its composite parts as
separate fields where convenient.

A connection on 𝒱 is a derivation4
∼∇ ∶ Γ(𝒱) → Ω1(ℳ, 𝒱) from vector fields to vector-

valued 1-forms. The interpretation is that ( ∼∇𝝍)( ∼𝑋)—that is, the action of the 𝑉 -valued 1-form
∼∇𝝍 on a vector ∼𝑋 ∈ Tℳ—gives the directional derivative of 𝝍 along ∼𝑋 (with respect to the
connection ∼∇). Employing a basis {𝒆𝑎} of 𝒱 and local coordinates {𝑥𝜇} of ℳ, any connection
is of the form

∼∇𝝍 = ∼d𝝍 + ∼𝑨𝝍
= (𝜕𝜇𝜓𝑎

𝑏 + 𝐴𝜇
𝑎

𝑏𝜓𝑏) 𝒆𝑎 ⊗ ∼d𝑥𝜇

for some matrix-valued 1-form ∼𝑨, where ∼d is the exterior derivative. (More precisely, ∼𝑨 ∈
Ω1(ℳ, 𝔤) is a 𝔤-valued 1-form, where 𝔤 is the Lie algebra of the gauge group 𝐺.) If ∼∇𝝍 is
required to transform like the matter field 𝝍 under local gauge transformations, that is, as

∼∇𝝍
𝑔

↦ 𝑔 ⋅ ( ∼∇𝝍) = (𝑔 ⋅ ∼∇)(𝑔𝜌𝝍) != 𝑔𝜌 ∼∇𝝍,

then ∼∇ is called a covariant derivative and the connection 1-form ∼𝑨 consequently obeys

∼𝑨
𝑔

↦ 𝑔 ⋅ ∼𝑨 = 𝑔𝜌 ∼𝑨𝑔−1
𝜌 − (∼d𝑔𝜌)𝑔−1

𝜌 . (1.2)

Such a connection ∼∇𝐴 is not unique; it depends on the choice of the 1-form field ∼𝑨. It is
exactly this connection 1-form which is promoted to a dynamical object in a gauge theory and
given the name the gauge field. At each point in spacetime, the gauge field ∼𝑨 linearly assigns
to each direction in spacetime an infinitesimal transformation of the matter field (this is why
∼𝑨 is Lie algebra valued).

In order for the gauge field to be incorporated in the theory’s equations of motion, we
would like to have a notion of its derivative. However, the covariant derivative ∼∇ ∶ Γ(𝒱) ≅
Ω0(ℳ, 𝒱) → Ω1(ℳ, 𝒱) is not readily defined on 1-forms such as ∼𝑨 until we canonically
extend it to a covariant exterior derivative5 ∼d∇ ∶ Ω𝑝(ℳ, 𝒱) → Ω𝑝+1(ℳ, 𝒱), given by

∼d∇ ∼
𝝋 ≔ ∼d ∼

𝝋 + ∼𝑨 ∧
∼
𝝋.

This enables the construction of, among other things, the curvature 2-form or gauge field strength

∼𝑭 ≔ ∼d∇ ∼𝑨
= ∼d ∼𝑨 + ∼𝑨 ∧ ∼𝑨 ≡ (∼d ∼𝐴𝑎

𝑏 + ∼𝐴𝑎
𝑐 ∧ ∼𝐴𝑐

𝑏) 𝒆𝑎 ⊗ 𝒆𝑏,
4More precisely, ∼∇ is a 𝒞∞(ℳ)-linear derivation, meaning ∼∇(𝑓𝒖 + 𝑔𝒗) = 𝑓 ∼∇𝒖 + 𝑔 ∼∇𝒗 for scalar fields

𝑓, 𝑔 ∈ 𝒞∞(ℳ) and ∼∇(𝒖 ⊗ 𝒗) = ∼∇(𝒖) ⊗ 𝒗 + 𝒖 ⊗ ∼∇(𝒗).
5The extension is uniquely defined by requiring the graded Leibniz property ∼d∇(

∼
𝜑⊗𝝍) = ∼d ∼

𝜑⊗𝝍+(−1)𝑝
∼
𝜑∧

∼∇𝝍 for
∼
𝜑 ∈ Ω𝑝(ℳ) and 𝝍 ∈ Γ(𝒱), analogous to the usual exterior derivative.
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where {𝒆𝑎} and {𝒆𝑎} form a basis and dual basis of 𝒱. The field strength is also equivalent to

∼𝑭 = ∼∇ ∧ ∼∇ ≡ [∇𝜇, ∇𝜈] ∼d𝑥𝜇∧ ∼d𝑥𝜈.

The field strength ∼𝑭 is useful because it is tensorial, in the sense that it transforms like the
matter field; ∼𝑭 ↦ 𝑔 ⋅ ∼𝑭 = 𝑔𝜌 ∼𝑭 𝑔−1

𝜌 under gauge transformations, even though ∼𝑨 does not. The
gauge field strength automatically satisfies the Bianchi identity, ∼d∇ ∼𝑭 = 0.

We have seen how the gauge field ∼𝑨 and its strength ∼𝑭 arise when we require the notion
of a spacetime derivative for a matter field which possesses local gauge freedom, and are now
acquainted with the dynamical objects of a gauge theory. Thematter field 𝝍, its derivative ∼∇𝐴𝝍
and the strength of the gauge field ∼𝑭 all transform regularly under gauge transformations. All
that remains to be specified in our theory are the equations of motion, which are to be expressed
in terms of these three geometrical objects in a gauge invariant manner.

1.1.1 Lagrangians in Field Theories

For classical gauge theories, the equations of motion may be specified as the extremisers of an
action

𝑆[𝝍, ∼∇𝐴𝝍, ∼𝑭 ] = ∫
ℳ

∼ℒ[𝝍, ∼∇𝐴𝝍, ∼𝑭 ],

where ∼ℒ is a local Lagrangian density. In order that the equations of motion are physically well-
defined, we require the Lagrangian to possess the relevant symmetries: gauge symmetry, so
that the equations of motion are gauge invariant; and Lorentz symmetry (which is automatic if
∼ℒ = ℒ ∼vol is expressed as a volume form) [6, § 7.1]. The equations of motion are invariant under
adjustments to the Lagrangian density by a total derivative ∼d ∼𝐾 , since by Stokes’ theorem these
contribute only to terms on the boundary, where the fields are fixed by assumption. Therefore,
a Lagrangian which possesses gauge symmetry is still generally permitted to transform as

∼ℒ ↦ ∼ℒ + ∼d ∼𝐾 (1.3)

under gauge transformations. If a Lagrangian transforms as (1.3) under a continuous gauge
symmetry parametrised by 𝑛 parameters 𝛼𝑖, then Noether’s theorem implies the existence of
𝑛 conserved current densities (viz. 3-forms6), one for each 𝛼𝑖,

∼𝐽(𝑖) = 𝜕 ∼ℒ
𝜕 ∼∇𝝍

𝜕𝝍
𝜕𝛼𝑖

∣
id

− 𝜕 ∼𝐾
𝜕𝛼𝑖

, (1.4)

whose continuity equations read ∼d∼𝐽(𝑖) = 0.
On the other hand, the Lagrangian of a quantum field theory enjoys an enlarged criterion

of gauge symmetry: it is also permitted to transform as

∫
ℳ

∼ℒ ↦ ∫
ℳ

∼ℒ + 𝑛 ⋅ 2𝜋ℏ, (1.5)

6A current density naturally transforms as a 3-form. The partial derivative 𝜕 ∼ℒ/𝜕 ∼∇𝝍 of a volume form ∼ℒ
with respect to a 1-form ∼∇𝝍 is itself a 3-form, and is defined by canonically extending the scalar partial derivative
to be an anti-derivation on differential forms. For details, see [8].
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where 𝑛 ∈ Z may vary discretely under different gauges. This is because of the origin of a
QFT’s equations of motion in the Feynman path integral. Explicitly, the quantum mechanical
amplitude that the fields 𝝍 and ∼𝑨 satisfy prescribed boundary conditions on 𝜕𝛺 surrounding
some region of spacetime 𝛺 ⊆ ℳ is given by the path integral

A = ∫
𝜕𝛺

𝒟[𝝍, ∼𝑨] exp{ 𝑖
ℏ𝑆[𝝍, ∼∇𝐴𝝍, ∼𝑨]}, (1.6)

where the intended meaning of 𝒟[⋯] is an integration over all field configurations on 𝛺. If
the Lagrangian were to undergo a discrete gauge transformation (1.5), the amplitude A ↦
A exp(𝑛 ⋅ 2𝜋𝑖) would be left invariant. In other words, physical consistency of a QFT does
not require the single-valuedness of the action 𝑆, but only of exp(𝑖𝑆/ℏ). This leads to an
enlargement of the space of possible Lagrangian densities to include, in particular, topological
terms. These prove to be especially relevant to QFTs and to the strong 𝐶𝑃 problem itself.

1.1.2 The Yang–Mills Lagrangian and the Topological 𝜃-Term
An important component of a gauge theory’s equations of motion are the terms in the La-
grangian which describe the dynamics of the gauge field ∼𝑨. These specify how the gauge field
behaves in the vacuum (e.g., describing the classical electromagnetic field, or the quantum the-
ory of photons, in the absence of matter). Thus, we are interested in the possible consistent
Lagrangians which may be constructed from the gauge field ∼𝑨 without the matter field

∼
𝜓.

Alongwith requiring Lorentz and gauge invariance, consistency also requires that the quan-
tum field theory associated to a Lagrangian be renormaliseble. Loosely speaking, a classical field
theory is renormalisable if it can be “quantised without introducing irrecoverable infinities”.
(This restricts the form of the Lagrangian considerably, but how this happens is beyond this
review’s scope.) Under these constraints, the only admissible QFT Lagrangians which may be
constructed from the gauge field ∼𝑨 alone are linear combinations of

⟨∼𝑭 ∧ ⋆ ∼𝑭 ⟩ ≡ 1
2 ⟨𝑭𝜇𝜈, 𝑭𝜌𝜎⟩Ad 𝑔𝜇𝜌𝑔𝜈𝜎

∼vol and ⟨∼𝑭 ∧ ∼𝑭 ⟩ ≡ 1
4 ⟨𝑭𝜇𝜈, 𝑭𝜌𝜎⟩Ad 𝜖𝜇𝜈𝜌𝜎

∼vol,

where ⋆ is the Hodge dual [6, § 7.1.2]. The inner product ⟨ , ⟩Ad on the Lie algebra 𝔤 of the gauge
group 𝐺 is chosen such that it is gauge-invariant.7 Such an inner product ⟨ , ⟩Ad on 𝔤 is not
unique; it depends on a choice of coupling constants. In particular, if the gauge group 𝐺 is the
direct sum of 𝑛 simple Lie groups,8 then ⟨ , ⟩Ad is specified by the choice of exactly 𝑛 coupling
constants, one corresponding to each factor of 𝐺 [6, § 2.5]. Physically, the coupling constants
determine the relative interaction strengths of the forces associated to each factor of 𝐺, and
must enter the theory as free parameters determined experimentally. (For instance, the gauge
group of the standard model (1.1) has three such coupling constants for the strong SU(3), weak
SU(2), and electromagnetic U(1) interactions.)

The term ⟨∼𝑭 ∧ ⋆ ∼𝑭 ⟩ is known as the Yang–Mills Lagrangian, and is a major component in
the standard model, describing boson force carrier propagation and self-interaction (such as

7Recall that ∼𝑨, and hence ∼𝑭 , are 𝔤-valued forms, so an inner product on 𝔤 is needed to produce a scalar. For
this scalar to be gauge invariant, the inner product must additionally be “Ad-invariant” [6, § 7.3].

8Any compact connected Lie group is either of this form, or is a finite quotient of such a group, if U(1) is
counted as “simple”. [6, § 2.4.3].
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gluon self-interactions). The Yang–Mills Lagrangian yields the equation of motion ∼d∇ ⋆ ∼𝑭 = 0.
For the Abelian gauge group 𝐺 = U(1) of electromagnetism, this equation, together with the
Bianchi identity ∼d∇ ∼𝐹 = 0, are the source-freeMaxwell equations. (Since the Lie algebra of U(1)
isR, the 2-form ∼𝐹 of QED is a scalar-valued.) Expressing ∼𝐹 = ∼d𝑐𝑡∧ ⃗𝐸 +⋆(∼d𝑐𝑡∧�⃗�) in terms of
the 3-component non-relativistic electric and magnetic field 1-forms by choosing a spacetime
split, the Yang–Mills term is the familiar electromagnetic energy density ∼𝐹 ∧⋆∼𝐹 = �⃗�2+ ⃗𝐸2/𝑐2.

The other term ⟨∼𝑭 ∧ ∼𝑭 ⟩ is known as the Chern–Simons term or the topological 𝜃-term, for
reasons which will become apparent after a survey of its properties.

• The Chern–Simons term is odd under both time-reversal symmetry 𝑇 and parity 𝑃 (no-
tice 𝜖𝜇𝜈𝜌𝜎 ↦ −𝜖𝜇𝜈𝜌𝜎 under 𝑇 or 𝑃 ) but not under charge conjugation 𝐶 . This may also
be seen by introducing a spacetime split, whereby ⟨∼𝑭 ∧ ∼𝑭 ⟩ = tr(𝑬 ⋅ 𝑩) ∼vol, since ∼𝑬 is
a vector of odd-parity and ∼𝑩 is a pseudovector of even-parity. Hence, it may give rise to
𝐶𝑃 -violating dynamics.

• It is topological because it does not depend on the geometry of spacetime via the metric
𝑔𝜇𝜈 (instead, all spacetime indices are contractedwith 𝜖𝜇𝜈𝜌𝜎). Hence, an action∫ℳ ⟨∼𝑭 ∧ ∼𝑭 ⟩
depends only on the integrand’s topology over ℳ. (Recall that ∼𝑭 is 𝔤-valued, so for suffi-
ciently interesting gauge groups, the space of gauge fieldsmay have non-trivial topology.)

• Furthermore, ⟨∼𝑭 ∧ ∼𝑭 ⟩ is a total derivative of the Chern–Simons 3-form ∼𝜔3,

⟨∼𝑭 ∧ ∼𝑭 ⟩ = ∼d∼𝜔3 = ∼d tr( ∼𝑨 ∧ ∼d ∼𝑨 + 2
3 ∼𝑨 ∧ ∼𝑨 ∧ ∼𝑨),

meaning that the action ∫ℳ ⟨∼𝑭 ∧ ∼𝑭 ⟩ depends only on the topology of ∼𝑨 on the spacetime
boundary 𝜕ℳ. As such, it does not affect the classical equations of motion. However, it
has important implications in the quantum theory.

• Its integral is a discrete topological invariant

𝑛 = 1
8𝜋2 ∫

ℳ
⟨∼𝑭 ∧ ∼𝑭 ⟩ = 1

8𝜋2 ∫
𝜕ℳ

∼𝜔3 ∈ Z, (1.7)

known as the Pontryagin number, the second Chern class [9, § 1] or simply the ‘winding
number’ [7, § 2.2] of the gauge field configuration ∼𝑨. Importantly, this means that the
Chern–Simons term is not totally gauge invariant if there are topologically distinct gauge
fields ∼𝑨 with varying winding number.

The choice of the symbol 𝜃 in the name “𝜃-term” reflects the angular nature of any coefficient
𝜃 attached to the Chern–Simons term, as in

∼ℒ𝜃[ ∼𝑨] = 𝜃
8𝜋2 ⟨∼𝑭 ∧ ∼𝑭 ⟩ ℏ. (1.8)

The action of this Lagrangian is 𝜃𝑛ℏ whenever ∼𝑨 has winding number 𝑛. Since this enters
the path integral as 𝑒𝑖𝜃𝑛 = 𝑒𝑖(𝜃+2𝜋)𝑛, the coefficient 𝜃, henceforth the 𝜃-parameter, is only
distinguishable modulo 2𝜋 and is hence an angular quantity. As a whole, (1.8) is referred to as
the 𝜃-term.
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Glossary of technical terms

• degenerate — quantum eigenstates which share the same eigenvalues (usually energy) but which
are physically distinguishable

• axial, chiral — a transformation acting differently on left- and right-handed fermions.

• anomalous symmetry — a symmetry of the classical Lagrangian, but not of the measure 𝒟[𝝍, ∼𝑭 ]
in the path integral (1.6), and hence not a symmetry of the associated quantum theory.

• spontaneously broken symmetry — a symmetry of the Lagrangian which fails to manifest in the
ground state solutions.

• Nambu–Goldstone boson — a scalar boson which arises due to a spontaneously broken symme-
try. The dimension of the broken symmetry group is the number of resulting Nambu–Goldstone
bosons.

The standard model employs the Yang–Mills Lagrangian ⟨∼𝑭 ∧ ⋆ ∼𝑭 ⟩, but does not find use
for the other possible 𝜃-term. Historically, the 𝜃-term was dismissed as unphysical, since at
first sight it appears to be a gauge-dependent boundary term. It was only with the discovery
of instantons and the non-trivial vacuum of QCD in the mid 1970s [10] that it was realised that
the 𝜃-term should be considered, and does not necessarily vanish [11].

1.1.3 The 𝜃-Term as a Consequence of the Non-trivial Vacuum

The 𝜃-term ismore than just amathematical possibility which lacks physical reason for its inclu-
sion in the Lagrangian. It is in fact central to non-Abelian gauge theories as a direct consequence
of their non-trivial vacuum structure, which is responsible for interesting non-perturbative dy-
namical effects. The non-trivial vacuum is not an obvious feature of non-Abelian theories, as it
is absent in Abelian theories such as QED, out of which QCD emerged.

For an Abelian gauge group 𝐺 = U(1) with total gauge group bundle 𝒢 = 𝒰(1), the
space of asymptotically-identity gauge transformations Γid(𝒰(1)) is continuously connected
to the identity.9 This means that any two gauge-equivalent gauge field configurations can be
continuously gauge transformed into each other. Hence, all gauge transformations preserve
the topology of the gauge field, and the winding number is zero for all ∼𝑨 ∈ Ω1(ℳ, 𝔲(1)).
Consequently, the 𝜃-term (with constant 𝜃) is neither relevant in classical electromagnetism
nor in QED, because it vanishes identically.

However, for non-Abelian gauge groups, the space of gauge transformations Γid(𝒢) may
have a non-trivial topology, containing gauge transformations which are not diffeomorphic.
This allows for the possibility of gauge-equivalent field configurations which cannot be con-
tinuously transformed into one another. In the case where ℳ is (1 + 3)-dimensional space-
time and 𝒢 = 𝒮𝒰(3) is the total gauge group of QCD, the space Γid(𝒮𝒰(3)) consists of path-
disconnected regions labelled by some 𝜈 ∈ Z. (In topological language, the third homotopy
group 𝜋3(Γid(𝒮𝒰(3))) ≅ Z is the group of integers.) This means that there are topologically
inequivalent gauge transformations of any given ∼𝑨, with the winding number labelling each

9We consider the space of asymptotically-identity gauge transformations Γid(𝒢), whose elements are maps
𝑔 ∶ ℳ → 𝐺 with 𝑔|𝜕ℳ = id (or equivalently with 𝑔(𝑥) → id as 𝑥 → ∞), because ∼𝑨 must be fixed on the
boundary in order to prescribe boundary conditions.
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distinct topological class. Elements 𝑔0 ∶ ℳ → 𝐺 in the identity-connected component of
Γid(𝒢) are named small gauge transformations, and all others large. A large gauge transfor-
mation 𝑔𝜈 ∈ Γid(𝒢) shifts the winding number 𝑛 of a gauge field ∼𝑨 to 𝑛 + 𝜈, giving rise to
Z-many gauge-equivalent fields {𝑔𝜈 ⋅ ∼𝑨}𝜈∈Z which belong to distinct homotopy classes. Gauge
field configurations with nonzero winding number are known as instantons [11, 12].

Despite the name, large gauge transformations are not truly gauge symmetries, in the sense
that they are not genuine automorphisms of the equations of motion. Indeed, large gauge trans-
formationsmay transition between states which can be distinguished by physical measurement.
For instance, if the gauge field ∼𝑨 has winding number 𝑛, then the action of the 𝜃-term

𝑆[ ∼𝑨] = ∫
ℳ

∼ℒ𝜃[ ∼𝑨] = 𝜃𝑛ℏ

is proportional to𝑛. A large gauge transformation 𝑔𝜈 then shifts this action𝑆[ ∼𝑨] → 𝑆[𝑔𝜈 ⋅ ∼𝑨] =
𝑆[ ∼𝑨] + 𝜃𝜈ℏ. From the path integral (1.6), this induces relative phases 𝑒𝑖𝜃𝜈 varying across the
domain of integration which may interfere and alter the amplitude. In other words, instantons
are measurable.

The 𝜃-Vacuum

Of particular interest are the implications of instantons for the QCD vacuum. In a Yang–Mills
theory whose Lagrangian includes the term ∼ℒYM = ⟨∼𝑭 ∧ ⋆ ∼𝑭 ⟩ , a vacuum state is one in which
the field strength (and all other fields) vanish; ∼𝑭 = ∼𝟎. Not only is this consistent with an
identically vanishing gauge field ∼𝑨0 = ∼𝟎, but also with gauge transformations (1.2) of ∼𝑨0,

𝑔 ⋅ ∼𝑨0 = (∼d𝑔𝜌)(𝑔𝜌)−1,
which are called “pure gauge” configurations. Small gauge transformations are not measurable
and describe the same vacuum state, whereas large ones 𝑔𝑛 ⋅ ∼𝑨0 are distinguishable, hence
describing distinct vacua |𝑛⟩ labelled by winding number. Since 𝑔𝜈 ⋅ |𝑛⟩ = |𝑛 + 𝜈⟩, these states
are not gauge-invariant. The only vacuum states which are invariant under the gauge (up to an
overall phase) are those of the form

|𝜃⟩ = ∑
𝑛∈Z

𝑒𝑖𝜃𝑛 |𝑛⟩ ,

for some constant parameter 𝜃. Thus, the theory possesses a topological circle of distinct gauge-
invariant vacua |𝜃⟩ labelled by the vacuum angle 𝜃 ∈ [0, 2𝜋).

The existence of the enriched vacuum |𝜃⟩ is equivalent to the inclusion of the 𝜃-term in an
effective Lagrangian, in the following way: Denote by +⟨𝑛|𝑚⟩− the quantum amplitude that
the vacuum state |𝑛⟩ at 𝑡 → −∞ evolves to |𝑚⟩ at 𝑡 → ∞. The vacuum-to-vacuum amplitude
is

+⟨𝜃|𝜃⟩− = ∑
𝑛,𝑚

𝑒𝑖𝜃(𝑛−𝑚)
+⟨𝑚|𝑛⟩− = ∑

𝜈
𝑒𝑖𝜃𝜈 ∑

𝑛
+⟨𝑛|𝑛 + 𝜈⟩−, (1.9)

with all summations over Z. In the path integral formulation (1.6), the amplitude +⟨𝑛|𝑛 + 𝜈⟩−
can be expressed explicitly as

+⟨𝑛|𝑛 + 𝜈⟩− = ∫
𝜕𝛺

𝒟[ ∼𝑨; 𝜈] exp{ 𝑖
ℏ ∫

𝛺
∼ℒ}, (1.10)
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where 𝒟[ ∼𝑨; 𝜈] means that the path integral is over all instanton gauge fields with winding
number 𝜈, since only those induce a transition |𝑛⟩ ↦ |𝑛 + 𝜈⟩. Combining (1.9) and (1.10), the
amplitude of evolution from the gauge invariant vacuum to itself is

+⟨𝜃|𝜃⟩− = ∑
𝜈

𝑒𝑖𝜃𝜈 ∫
𝜕𝛺

𝒟[ ∼𝑨; 𝜈] exp{ 𝑖
ℏ ∫

𝛺
∼ℒ}

= ∑
𝜈

∫
𝜕𝛺

𝒟[ ∼𝑨; 𝜈] exp{ 𝑖
ℏ ∫

𝛺
∼ℒ + 𝑖𝜃𝜈},

which, using (1.7) to write 𝑖𝜃𝜈 as the 𝜃-term in the Lagrangian, is

= ∫
𝜕𝛺

𝒟[ ∼𝑨] exp{ 𝑖
ℏ ∫

𝛺
[ ∼ℒ + 𝜃

8𝜋2 ⟨∼𝑭 ∧ ∼𝑭 ⟩ ℏ⏟⏟⏟⏟⏟⏟⏟⏟⏟
∼ℒeff

]}.

The effects of the non-trivial vacuum are thus encapsulated in the effective Lagrangian

∼ℒeff = ∼ℒ + 𝜃
8𝜋2 ⟨∼𝑭 ∧ ∼𝑭 ⟩ ℏ.

It is in this sense that the 𝜃-term arises in the Lagrangian due to the non-trivial QCD vacuum.

1.1.4 Dirac Fermion Fields and the Chiral Anomaly

An important kind of matter field in the standard model is the Dirac fermion field 𝝋, which
transforms under the spin-1

2 representation of the Lorentz group. Dirac fermions take their
values in a 4-component complex space, denoted C4

D. The entire matter content of the standard
model, including quarks and leptons, is comprised purely of such fermion fields.

TheDiracmatrices𝜸𝜇 form a basis for the algebra of spacetime, the Clifford algebra𝒞𝑙1,3(C),
satisfying 𝜸(𝜇𝜸𝜈) = 𝜂𝜇𝜈 , and are used to write 4-component Dirac fermions in the spin-1

2 rep-
resentation. An inner product on fermions ⟨𝝍, 𝝋⟩ ≡ ̄𝝍𝝋 ∈ R is provided by the Dirac adjoint

̄𝝍 ≔ 𝝍†𝜸0, so that Lorentz-invariant quantities may be naturally constructed. Finally, fermions
may be separated into left-handed 𝝋+ and right-handed 𝝋− components with the projection
operators 𝝋± = 1

2(1 ± 𝜸5) where 𝜸5 ≔ 𝑖𝜸0𝜸1𝜸2𝜸3. In theories which violate parity, left-
and right-handed fermions may experience different interactions. (For instance, left-handed
neutrinos interact in the standard model, while right-handed neutrinos are completely inert.)

The simplest fermion equation of motion, the Dirac equation, derives from the Dirac La-
grangian density

∼ℒDirac = �̄�(𝑖ℏ𝑐𝜸𝜇𝜕𝜇 − 𝑚𝑐2)𝝋 ∼vol,

which describes a single non-interacting spin-1
2 fermion of mass 𝑚. The Dirac Lagrangian may

be localised in the presence of a gauge symmetry, giving

∼ℒDirac = ̄𝝍(𝑖𝜸𝜇∇𝜇 − 𝑚)𝝍 ∼vol, (1.11)

where ∼∇𝝍 ≡ (∇𝜇𝝍) ∼d𝑥𝜇 is the covariant derivative with respect to the gauge field, and where
we have now begun to employ units in which ℏ = 𝑐 = 1 for brevity. The matter field 𝝍 =
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𝝋(1) ⊕ ⋯ ⊕ 𝝋(𝑛) may now more generally be comprised of multiple fermion fields, which may
be rotated into one another by the gauge group (an example being flavour symmetry in QCD).
The localised Dirac Lagrangian describes multiple fermion types and their interactions with the
gauge bosons. The electromagnetic interactions of charged fermionic matter are described by
(1.11) in the case of a U(1) gauge symmetry, where the gauge field ∼𝑨 ≡ ∼𝐴 is the electromagnetic
vector potential.

The Anomalous Axial Symmetry

In quantum theories of fermions, the 𝜃-termmakes another important appearance, arising in the
context of the chiral anomaly. TheDirac Lagrangian classically possesses two fundamental U(1)
symmetries which rotate fermion phases vectorially or axially. The classical axial symmetry is
violated upon quantisation—an effect known as the chiral anomaly.

To illustrate, the vectorial symmetry U(1)𝑉 is the invariance of the Dirac Lagrangian under
global Abelian transformations known as vector fermion rotations. The action of U(1)𝑉 is a
simple phase rotation 𝝍 ↦ 𝑒𝑖𝛼𝝍, where 𝛼 is the parameter. The conserved Noether current
density associated to this symmetry is

∼𝐽𝑉 = ℏ𝑐 ̄𝝍 ⋆
∼
𝜸 𝝍, i.e., 𝑗 𝜇

𝑉 = ℏ𝑐 ̄𝝍 𝜸𝜇𝝍,
where

∼
𝜸 = 𝜸𝜇 ∼d𝑥𝜇. (These 3-form and vector representations are related by ∼𝐽𝑉 = ⋆

∼
𝑗𝑉 .) The as-

sociated continuity equation reads ∼d∼𝐽𝑉 = 0 (i.e., 𝜕𝜇𝑗𝜇
𝑉 = 0), corresponding to the conservation

of charge, or baryon number in QCD.
On the other hand, the axial symmetry U(1)𝐴 is invariance under axial fermion rotations,

which transform left- 𝝍+ and right-handed 𝝍− fermion components oppositely:

𝝍
U(1)𝐴↦ 𝑒𝑖𝜸5𝜃𝝍, i.e., 𝝍±

U(1)𝐴↦ 𝑒±𝑖𝜃𝝍±. (1.12)

The associated Noether current density,

∼𝐽𝐴 = ℏ𝑐 ̄𝝍 ⋆
∼
𝜸 𝜸5 𝝍, i.e., 𝑗𝜇

𝐴 = ℏ𝑐 ̄𝝍 𝜸𝜇𝜸5 𝝍,
is conserved classically. The charge associated to ∼𝐽𝐴 is the number of left-handed particles
minus the number of right-handed. However, the U(1)𝐴 symmetry is anomalous, meaning it
does not survive the quantisation procedure, and is not an exact symmetry of the quantum
theory. Specifically, an anomalous symmetry does not leave invariant the integral measure
𝒟[⋯] in (1.6) of the path integral in the quantum theory [7]. Instead, the continuity equation
∼d∼𝐽 = 0 fails by the presence of none-other than the 𝜃-term,

∼d∼𝐽𝐴 ∝ ⟨∼𝑭 ∧ ∼𝑭 ⟩ ,
with the constant of proportionality depending on the details of the theory (the number of
fermion species, etc). This means that the axial current ∼𝐽𝐴 is not conserved—and hence 𝐶𝑃
symmetry is violated—in the presence of instantons, where ∫ ⟨∼𝑭 ∧ ∼𝑭 ⟩ is nonzero.

By Noether’s theorem (1.4), this is equivalent to the addition of a total derivative to the
Lagrangian ∼ℒeff = ∼ℒ + ∼d ∼𝐾 . This total derivative is precisely the 𝜃-term, because

∼d∼𝐽𝐴 = ⟨∼𝑭 ∧ ∼𝑭 ⟩ = 𝜕∼d ∼𝐾
𝜕𝜃 ⟹ ∼d ∼𝐾 = 𝜃 ⟨∼𝑭 ∧ ∼𝑭 ⟩ ,
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where here 𝜃 is the axial rotation parameter appearing in (1.12). The axial current ∼𝐽 ′
𝐴 of this

new Lagrangian ∼ℒeff is indeed conserved. In other words, an axial rotation does not leave the
Lagrangian invariant, but instead generates an effective 𝜃-term [13, § 8].

1.2 QCD and the Strong 𝐶𝑃 Problem

We are almost prepared to express the theory of quantum chromodynamics so that the strong
𝐶𝑃 problem manifests itself. All that remains is to introduce the final piece of QCD—the
fermion mass terms, and the implications of the chiral anomaly.

Quantum chromodynamics describes the strong interactions among hadronic matter. Fields
which interact via the strong force are called colour-charged, and in QCD, the colour-charged
fields are the quarks.

In QCDwith 𝑁𝑐 colours, a quark is a colour-charged Dirac fermion, represented by a matter
field 𝝍 = 𝝋 ⊗ 𝒄 with values in C4

D ⊗ C
𝑁𝑐
C , where 𝝋(𝑥) ∈ C4

D is a plain Dirac fermion and
𝒄(𝑥) ∈ C

𝑁𝑐
C is a 𝑁𝑐-component vector in colour space. A quark field 𝝍 can either be viewed

as a fermion with components in colour space, or equivalently as a 𝑁𝑐-tuple of fermions. The
gauge group is SU(𝑁𝑐), and its action on 𝝍 is to transform colour space under the fundamental
representation; i.e., 𝝍 ↦ 𝝍′ = 𝝋 ⊗ U𝒄 with U ∈ SU(𝑁𝑐). The gauge field ∼𝑨, named the
gluon field, is an 𝔰𝔲(𝑁𝑐)-valued 1-form, which can equivalently be viewed as a collection of
dim 𝔰𝔲(𝑁𝑐) = 𝑁2

𝑐 − 1 independent 1-form fields, or eight distinct gluon types in the case
𝑁𝑐 = 3 as in the standard model. QCD can be constructed with 𝑁𝑓 quark types—or flavours—
by taking the matter field to be a direct product of 𝑁𝑓 quark fields, each sharing the same
SU(𝑁𝑐) gauge action.

The Lagrangian of pure QCD is a sum of the Dirac and Yang–Mills Lagrangians,

∼ℒQCD = ̄𝝍(𝑖𝜸𝜇∇𝜇 − m)𝝍 ∼vol − ⟨∼𝑭 ∧ ⋆ ∼𝑭 ⟩ + 𝜃
8𝜋2 ⟨∼𝑭 ∧ ∼𝑭 ⟩ ,

where 𝝍 ≡ 𝝍(1) ⊕ ⋯ ⊕ 𝝍(𝑁𝑓) is the matter field separated into its quark flavours, and m =
𝑚1 ⊕ ⋯ ⊕ 𝑚𝑁𝑓

is a diagonal matrix of quark masses. With indices written explicitly, and ℏ and
𝑐 temporarily reinstated for completeness, the Lagrangian density may be spelled out as

ℒQCD =
𝑁𝑓

∑
𝑞=1

̅𝜓(𝑞)
𝑎𝔠 (𝑖ℏ𝑐𝛾𝜇𝑎

𝑏∇𝜇 − 𝑚𝑞𝑐2𝛿𝑎
𝑏)𝜓𝑏𝔠

(𝑞) − ℏ
4𝐹 𝔞

𝔟𝜇𝜈𝐹𝔞
𝔟𝜇𝜈 + 𝜃ℏ

8𝜋2 𝐹 𝔞
𝔟𝜇𝜈𝐹𝔞

𝔟
𝜌𝜎𝜖𝜇𝜈𝜌𝜎,

where Latin and Fraktur indices denote C4
D fermion components and C3

C colour components,
respectively.

Yukawa Couplings and the Measurable ̄𝜃-parameter

The QCD sector of the standard model is an extension of pure QCD with three colours and six
quarks. The quarks are partitioned into up type and down type, and again into three generations,
eachwith varyingmasses and charges under the other components of the standardmodel gauge
group (1.1).
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generation I II III

up type u
2.2MeV/𝑐2

c
1.3GeV/𝑐2

t
170GeV/𝑐2

down type d
4.7MeV/𝑐2

s
0.1GeV/𝑐2

b
4.2GeV/𝑐2

Figure 1.1: Quark masses in the standard model.

Pure QCD contains a mass term ̄𝝍m𝝍, giving each quark 𝝍(𝑞) an intrinsic mass 𝑚𝑞. This
is not the mechanism by which quarks exhibit mass in the standard model—it cannot be, since

̄𝝍m𝝍 is not invariant under axial rotations. Instead, quarks obtain mass via the Higgs mecha-
nism, whereby 𝝍 is coupled to the Higgs field 𝐻 in Yukawa interaction terms in the Lagrangian

∼ℒmass = ℜ(𝐻 ̄𝝍+m𝝍−) = 1
2(𝐻 ̄𝝍+m𝝍− + 𝐻† ̄𝝍−m

†𝝍+).

The Lagrangian of the standard model QCD sector is thus [6, § 7.6.6]

∼ℒ SM
QCD = [ ̄𝝍𝑖𝜸𝜇∇𝜇𝝍 + ℜ(𝐻 ̄𝝍+m𝝍−)] ∼vol − ⟨∼𝑭 ∧ ⋆ ∼𝑭 ⟩ + 𝜃

8𝜋2 ⟨∼𝑭 ∧ ∼𝑭 ⟩ . (1.13)

Under independent axial rotations of each of the quark fields, the Yukawa mass term is
invariant provided the quark masses also shift phase. In addition, each independent U(1)𝐴
rotation generates a corresponding 𝜃-term, due to the chiral anomaly (§ 1.1.4). Thus, the full
QCD Lagrangian (1.13) is invariant under transformations of the form

𝝍(𝑞) ↦ 𝑒𝑖𝜸5𝑎𝑞/2𝝍(𝑞), 𝑚𝑞 ↦ 𝑒−𝑖𝑎𝑞𝑚𝑞, 𝜃 ↦ 𝜃 +
𝑁𝑓

∑
𝑞=1

𝑎𝑞, (1.14)

where 𝛼𝑞 parametrise the 𝑁𝑓 independent U(1)𝐴 rotations. To aid physical interpretation,
these U(1)𝐴 freedoms are exploited in order to normalise the Yukawa mass terms by making
the mass phases real.

The fact that the 𝜃-parameter may be redefined by axially rotating the quark fields means
that 𝜃 is not directly observable. However, this gauge freedom can be fixed by defining

̄𝜃 = 𝜃 + arg detm = 𝜃 + arg
𝑁𝑓

∏
𝑞=1

𝑚𝑞,

which is invariant under (1.14), as the two right-hand terms transform by ± ∑ 𝑎𝑞. The La-
grangian of the QCD sector of the standard model, complete with the ̄𝜃-term, is thus

∼ℒ SM
QCD = [ ̄𝝍𝑖𝜸𝜇∇𝜇𝝍 + ℜ(𝐻 ̄𝝍+m̃𝝍−)] ∼vol − ⟨∼𝑭 ∧ ⋆ ∼𝑭 ⟩ +

̄𝜃
8𝜋2 ⟨∼𝑭 ∧ ∼𝑭 ⟩ , (1.15)

where the normalised mass matrix m̃ is diagonal and real.
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The Statement of the Strong 𝐶𝑃 Problem

Proceeding with the assumption that ̄𝜃 ≠ 0, one finds that the strong force now violates 𝐶𝑃
symmetry. A physical prediction of the standard model modified with a 𝐶𝑃 -violating QCD
sector (1.15) is that the neutron is expected to possess an electric dipole moment of approximate
magnitude |𝑑𝑛| ≈ 10−18 ̄𝜃 𝑒 cm. In reality, current measurements [14, 15] of the neutron’s
electric dipole moment yield a tight upper bound of |𝑑𝑛| ≲ 10−26 𝑒 cm, which in turn implies a
stringent constraint on the ̄𝜃-parameter, | ̄𝜃| ≲ 10−10 [5]. Thus, the ̄𝜃-term is not considered to
be part of the standard model.

However, ̄𝜃 can only be zero if apparently unrelated parameters of the standard model per-
fectly cancel each other: the vacuum angle 𝜃, a QCD parameter; and the quark mass phases
arg detm, deriving from multiple electroweak parameters. One therefore expects ̄𝜃 to be 𝒪(1)
in Nature, and its extremely small value is hence a problem of fine-tuning. The strong 𝐶𝑃
problem is then the question, “why is ̄𝜃 so small?”

At first sight, the strong 𝐶𝑃 problem may not appear to be a problem at all. After all,
QCD is a theory whose Lagrangian possibly—but not necessarily—admits a term ∝ ⟨∼𝑭 ∧ ∼𝑭 ⟩
which gives rise to 𝐶𝑃 -violating interactions in the strong force, predicting an electric dipole
moment of the neutron. Empirical data is consistent with the neutron’s electric dipole moment
(and hence the 𝐶𝑃 -violating term) being zero. From a phenomenological perspective, it is
satisfactory to simply leave the ̄𝜃-term out of the theory’s Lagrangian and end the story there.
Indeed, a tautological way to ‘resolve’ the strong 𝐶𝑃 problem is to simply require that 𝐶𝑃 be
a symmetry of the strong force. However, this only begs the question of why 𝐶𝑃 symmetry
appears to be preserved in some sectors of the standard model while it is broken in others.

Furthermore, there is a strong argument that the inclusion of the 𝐶𝑃 -violating term is
“natural.” That is, we lack reason to exclude it on a theoretical basis: it is Lorentz and gauge
invariant, etc.; it is an implication of the non-trivial vacuum structure of QCD (instantons); and
it arises via the chiral anomaly for fermions. From an empirical perspective, if no 𝐶𝑃 -violating
interactions were observed in Nature, then ̄𝜃 could be justifiably set to zero on the basis of
symmetry. However, the weak interaction is explicitly parity-violating.10 Hence, the fact that
the ̄𝜃-term violates 𝐶𝑃 is not theoretically satisfactory reason for its exclusion.

The strong 𝐶𝑃 problem differers from other fine-tuning problems in the standard model in
the sense that it is of almost no consequence to everyday physics. Variation of the 𝜃-parameter
hardly affects nuclear physics at all because its effects are suppressed by the quark masses
[16]. On the other hand, variations of the cosmological constant, for example, predict universes
drastically different to our own, and similarly for the value of the weak scale, or the quark and
lepton masses. Such fine-tuning problems at least have anthropic solutions—but the strong 𝐶𝑃
problem does not.11 Thestrong𝐶𝑃 problem is therefore a compelling theoretical indication that
the standard model remains incomplete.

10In fact, the standard model is asymmetric under all combinations of charge conjugation, 𝐶; parity 𝑃 ; and
time-reversal 𝑇 modulo the prevailing combined 𝐶𝑃𝑇 symmetry.

11Given a theory linking the presence of dark matter to the smallness of 𝜃, an anthropic solution may exist if it
turns out that dark matter is necessary for, e.g., galaxy formation (investigated in [16]).
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1.3 The Massless Quark Solution

The simplest resolution to the strong 𝐶𝑃 problem is to stipulate that at least one quark is in
fact massless. If this were true, then detm would vanish, and the parameter ̄𝜃 = 𝜃 + arg detm
would be rendered unphysical. The massless quark solution is the claim that ̄𝜃 ≈ 0 because the
up quark is massless, 𝑚𝑢 = 0.

At first sight, this economical resolution to the strong 𝐶𝑃 problem appears to be in contra-
diction with the experimentally determined nonzero masses of the quarks (particularly 𝑚𝑢 ≈
2.2MeV). However, it was realised in the mid-1980s that the mass of the up quark has two con-
tributions in the standard model Lagrangian: not only the Yukawa mass 𝑚𝑢 (the ‘bare mass’)
as introduced above, but also a non-perturbative contribution 𝑚eff from topological effects (i.e.,
instantons) [17]. Only the bare quark masses contribute to the value of ̄𝜃 via the quark mass
matrixm. Importantly, it was plausible that this secondary source of the up quark’s mass could
be of order 𝑚eff ≈ 2.2MeV, allowing 𝑚𝑢 to vanish while still preserving the up quark’s overall
mass.

The massless up quark hypothesis remained controversial until lattice gauge theory had ad-
vanced sufficiently to made numerical simulations of non-perturbative effects in QCD possible.
Strong consensus that the instanton contribution 𝑚eff is not sufficiently large was reached in
late 2019 [17–19]. Instead, another mechanism is required to explain the smallness of the ̄𝜃-
parameter.
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2 The Peccei–Quinn Axion Solution

Themost famous resolution to the strong 𝐶𝑃 problem is the Peccei–Quinn theory of the axion,
first proposed in 1977 [20]. In essence, the axion solution involves extending the standardmodel
in order to promote the original ̄𝜃-parameter to a field ̄𝜃(𝑥) = ̄𝜃SM + 𝑎(𝑥) in such a way that
it is dynamically relaxed to zero, ̄𝜃 → 0. In doing so, a new massive boson described by the
pseudoscalar axion field 𝑎(𝑥) is necessarily introduced. There are different inequivalent ways
to extend the standard model to realise the axion solution, but all Peccei–Quinn axion models
share the same necessary features:

• The extended Lagrangian ∼ℒPQ possesses an additional global chiral symmetry U(1)PQ.
The exact action of this Peccei–Quinn symmetry depends on the particular axion model,
and is not of central importance. The defining feature of U(1)PQ is that it is chiral, so that
a U(1)PQ transformation by 𝛼 radians anomalously induces a 𝜃-term 𝛼 ⟨∼𝑭 ∧ ∼𝑭 ⟩ in the
effective Lagrangian (via the chiral anomaly).

• The Peccei–Quinn symmetry U(1)PQ is spontaneously broken, and the single resulting
Nambu–Goldstone boson is named the axion field, 𝑎(𝑥). Being a Nambu–Goldstone bo-
son, the axion transforms as 𝑎(𝑥) ↦ 𝑎(𝑥) + 𝛼 under a U(1)PQ rotation of 𝛼 radians. The
chiral anomaly results in a potential for the axion 𝑎(𝑥) (giving rise to axion mass) with a
potential minimum occurring where 𝑎(𝑥) = − ̄𝜃SM.

If the extra U(1)PQ symmetry was indeed an exact gauge symmetry, then the strong 𝐶𝑃
problem is trivially solved, because a U(1)PQ rotation by ̄𝜃 radians cancels the ̄𝜃-term in the
effective Lagrangian, meaning the dynamics of the theory are equivalent to one in which ̄𝜃 = 0.
However, themain result of Peccei andQuinn [20] is that U(1)PQ need not be an exact symmetry
of the theory: if U(1)PQ is spontaneously broken, then ̄𝜃 is still driven to zero because it obtains
a potential from the chiral anomaly with a minimum at ̄𝜃 = 0, [21].

2.1 Axion Models

Different extensions to the standard model which fulfil the requirements of a U(1)PQ symmetry
have been proposed, resulting in phenomenologically distinct classes of axion, with varying
masses and couplings to various standard model particles. When the Peccei–Quinn symmetry
was first described [20], the proposedmodel predicted strongly interacting, visible axionswhich
were experimentally refuted within a decade. Since then, the axion has remained a possibility
through models compatible with very weakly interacting, ‘invisible’ particles, in particular as
dark matter candidates [22].
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A Toy Axion Model

To illustrate the Peccei–Quinn mechanism explicitly, consider a minimal toy axion model,
which involves the addition of two fields to the standard model: a complex scalar field 𝛷 known
as the parent field (so named since its phase, after spontaneous breaking, is the axion field); and
an additional fermion 𝒒. The extended Lagrangian takes the form

∼ℒPQ = ∼ℒ
̄𝜃

SM + [⟨∼d𝛷, ∼d𝛷⟩ + R( ̄𝒒+𝛷𝒒−)] ∼vol + ∼ℒ𝑞, (2.1)

where ∼ℒ
̄𝜃

SM is the standard model Lagrangian (including the ̄𝜃-term); ⟨∼d𝛷, ∼d𝛷⟩ is a kinetic term
for the parent field; R( ̄𝒒+𝛷𝒒−) is a Yukawa coupling term; and ∼ℒ𝑞 stands for any other terms
involving the new fermion 𝒒. The action of U(1)PQ on these fields is

𝛷 ↦ 𝑒𝑖2𝛼𝛷, 𝒒 ↦ 𝑒𝑖𝜸5𝛼𝒒 or { ̄𝒒+ ↦ 𝑒𝑖𝛼 ̄𝒒+
𝒒− ↦ 𝑒𝑖𝛼𝒒−

,

which indeed leaves ⟨∼d𝛷, ∼d𝛷⟩ and R( ̄𝒒+𝛷𝒒−) invariant. However, since 𝒒 undergoes an axial
rotation, the entire (effective) Lagrangian ∼ℒPQ is only invariant with the simultaneous subtrac-
tion of a term 𝛼 ⟨∼𝑭 ∧ ∼𝑭 ⟩ arising from the chiral anomaly. Therefore, the entire action of U(1)PQ
is to transform ̄𝜃 ↦ ̄𝜃 − 𝛼, as well as the fields. At this stage, the theory predicts 𝐶𝑃 violation
in the strong sector in areas where the axions and instantons interact such that ̄𝜃(𝑥) ≠ 0.

The final component of the axion solution is to make the parent field 𝛷 spontaneously break.
This may be done by adding a “Mexican hat” potential to ∼ℒPQ of the form

𝑉 (|𝛷|) = 𝜆(|𝛷|2 − 𝑓2
𝑎)2,

where the parameter 𝑓𝑎 is interpreted as the axion scale: the energy below which axion dy-
namics are relevant. Below this energy scale, the parent field 𝛷 relaxes to some non-unique
minimum of the form

𝛷 = |𝛷|𝑒𝑖 arg𝛷 = 𝑓𝑎𝑒𝑖𝑎/𝑓𝑎,

where 𝑎 varies across space. At sufficiently low energies, the effective degree of freedom is
the phase of 𝛷, not 𝛷 itself.1 The resulting phase 𝑎(𝑥) is named the Nambu–Goldstone boson
associated with the spontaneous breaking of U(1)PQ by the parent field 𝛷, and is identified as
the axion field. After spontaneous breaking, the Yukawa term involves a complex mass, which
can be normalised by a U(1)PQ rotation by −𝑎/𝑓𝑎

R( ̄𝒒+𝛷𝒒−) = 𝑓𝑎R( ̄𝒒+𝑒𝑖𝑎/𝑓𝑎𝒒−) ↦ 𝑓𝑎R( ̄𝒒+𝒒−).

This axial rotation of 𝒒 induces a corresponding rotation of 𝜃 ↦ 𝜃 −𝑎/𝑓𝑎, so that the (effective,
normalised) Lagrangian (2.1) becomes

∼ℒPQ = ∼ℒSM + [𝑓2
𝑎 ⟨∼d𝑎, ∼d𝑎⟩ + 𝑓𝑎R( ̄𝒒+𝒒−)] ∼vol + ∼ℒ𝑞 + ( ̄𝜃 − 𝑎

𝑓𝑎
) 1

8𝜋2 ⟨∼𝑭 ∧ ∼𝑭 ⟩ , (2.2)

1We assume that 𝜆 is sufficiently large that the radial degree of freedom 𝜌 in 𝛷 = (𝑓𝑎 + 𝜌)𝑒𝑖𝑎/𝑓𝑎 can be
neglected at the energy scale 𝑓𝑎.
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after spontaneous symmetry breaking of 𝛷.
Peccei and Quinn showed that the last term in (2.2) provides an effective potential 𝑉 (𝑎) for

the axion whose minimum occurs at 𝑉 ( ̄𝜃𝑓𝑎) = 0, giving the axion a vacuum expectation value
⟨𝑎⟩ = ̄𝜃𝑓𝑎 and a mass 𝑚𝑎 = 𝜕2𝑉 /𝜕𝑎2 |⟨𝑎⟩. The axion field 𝑎 is not physical, since 𝑎 ↦ 𝑎 + 𝛼
under a U(1)PQ rotation; however, the deviation from the expectation value 𝑎phys ≔ 𝑎 − ⟨𝑎⟩ is
physical. Expressing the Lagrangian in terms of the physical axion field reveals that the ̄𝜃-term
vanishes, thus solving the strong 𝐶𝑃 problem [21]. Focusing on terms involving 𝑎phys, the
effective Lagrangian is

∼ℒPQ = ∼ℒSM + ∼ℒ′
𝑞 + [𝑓2

𝑎 ⟨∼d𝑎phys, ∼d𝑎phys⟩ + 1
2𝑚2

𝑎𝑎2
phys] ∼vol + 𝑎phys

𝑓𝑎

1
8𝜋2 ⟨∼𝑭 ∧ ∼𝑭 ⟩ , (2.3)

where ∼ℒ′
𝑞 includes all terms involving 𝒒. Different axion models give rise to different ∼ℒ′

𝑞, but
otherwise share the Lagrangian (2.3). The axion mass 𝑚𝑎 depends on the axion scale 𝑓𝑎 as

𝑚𝑎 ≈ 6 eV(106GeV
𝑓𝑎

)

and is otherwise independent of the axion model, using accepted values of standard model
parameters [23].

𝛾

𝑎

𝛾

(a)

𝑔

𝑎

𝑔

(b)

Figure 2.1: Axion–photon and axion-gluon interaction vertices.

The precise axion–matter interactions entering through the term ∼ℒ′
𝑞 are model dependent,

but generally have coupling strengths inversely proportional to the axion scale, 𝑓𝑎 [22]. How-
ever, all Peccei–Quinn axions interact with the gauge field though the last term in the La-
grangian (2.3). The last term is proportional to ⟨∼𝑭 ∧ ∼𝑭 ⟩ = ∼𝐹 ∧ ∼𝐹 +⟨ ∼𝑮 ∧ ∼𝑮⟩, where ∼𝑭 = ∼𝐹 ⊕ ∼𝑮
is the total gauge field split into the electromagnetic ∼𝐹 and gluonic ∼𝑮 sectors. In perturbation
theory, this corresponds to a Feynman vertex in which an axion and two photons 𝑎𝛾𝛾, or an
axion and two gluons 𝑎𝑔𝑔 meet, as in figure 2.1a.

The 𝑎𝛾𝛾 interaction is strong where ∼𝐹 ∧ ∼𝐹 = ( ⃗𝐸 ⋅ �⃗�) ∼vol is large. This implies that axions
may be generated from photons and vice-versa in the presence of strong electromagnetic fields.
Near a charged particle such as an electron, where the field is concentrated in a Coulomb poten-
tial, the 𝛾 ↔ 𝑎 conversion is best viewed as a scattering process, 𝛾+𝑒± → 𝑒± +𝑎, and is named
the Primakoff effect [5, § 93.1.3]. The 𝑎𝑔𝑔 vertex gives rise to interactions between axions and
strongly-interacting hadronic matter (particularly pions and kaons) [23]. These interactions are
universal to all axion models. For leptonic axion models with an electron interaction term ∼ℒ𝑞,
there is also an axion–electron vertex. This enables a Compton scattering process in addition
to Primakoff scattering, both of which are shown in figure 2.2.
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Figure 2.2: Dominant axion processes with electrons (or positrons with arrows reversed) [23]. Compton
scattering only occurs for leptonic axions.

2.1.1 The Original Peccei–Quinn–Weinberg–Wilczek Axion

The first proposed axion model, the Peccei–Quinn–Weinberg–Wilczek (PQWW) axion, [24]
implements the U(1)PQ symmetry by supposing that the standard model possesses two Higgs
fields 𝐻1 and 𝐻2 which couple differently to up and down quarks, instead of just one which
couples to all quarks. Denoting by 𝝍± = 𝝍(𝑢)

± ⊕ 𝝍(𝑑)
± the left- and right-handed quarks

arranged into up-type and down-type parts, the two Higgs fields

∼ℒYukawa = ℜ(𝐻1 ̄𝝍+m𝑢𝝍(𝑢)
− + 𝐻2 ̄𝝍+m𝑑𝝍(𝑑)

− ),

where m𝑢 and m𝑑 are (non-square) matrices of Yukawa coupling constants. The first Higgs
field 𝐻1 gives mass to the up-type quarks, and 𝐻2 to down-type quarks. The presence of the
two Higgs fields lets ∼ℒYukawa be invariant under two independent chiral rotations of the up and
down quarks, hence accomplishing the additional U(1)PQ symmetry.

In this model, the axion scale 𝑓𝑎 is necessarily on the order of the electroweak scale, 𝑓EW ≈
246GeV (which is the vacuum expectation value of the Higgs field). The resulting axions are too
massive (𝑚𝑎 ≈ 25 keV) and too strongly interacting to agree with experiment. In particular,
the PQWW axion is ruled out by the non-observation of the kaon decay 𝐾+ → 𝜋+ + 𝑎 in
electron beam-dump experiments2 [21, 25]. Any successful axion model must have a higher
energy scale 𝑓𝑎 (i.e., lighter mass 𝑚𝑎) to be compatible with the constraints which excluded the
PQWW model [24].

2.1.2 Light Invisible Axion Models

Axions with a larger energy scale 𝑓𝑎 ≫ 𝑓EW are light (𝑚𝑎 ∼ 1/𝑓𝑎), long lived (e.g., the rate of
𝑎 → 2𝛾 goes as (𝑓𝑎)5) and weakly interacting (couplings generally are suppressed by 1/𝑓𝑎). In
particular, their electromagnetic interactions are weak, rendering them invisible [21, 24]. Such
axion models generally fall into two classes:

• The Kim–Shifman–Vainshtein–Zakharov (KSVZ) Axion
The KSVZ model introduces an additional massive quark 𝒒 as well as the parent field 𝛷.

• The Dine–Fischler–Srednicki–Zhitnitsky (DFSZ) Axion
The DFSZ model contains two Higgs doubles like the PQWW model, but also contains a

2Beam-dump experiments involve firing high-energy protons into a high-absorptionmaterial in order to isolate
neutral particles which are created from the decelerating protons and which propagate through the absorber.
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Figure 2.3: Example axion–photon oscillation diagram.

separate scalar parent field 𝛷. The DFSZ model contains the additional mass term

ℜ(𝐻2�̄�+m𝑒𝝋(𝑒)
− ),

which is a Yukawa coupling between one of the Higgs doublets 𝐻2, the left-handed lep-
tons 𝝋+, and the right-handed electron 𝝋(𝑒)

− , where m𝑒 is the (non-square) matrix of
Yukawa couplings. The (𝐻2, 𝝋(𝑒)

− ) coupling gives rise to an axion–electron vertex, and
hence DFSZ axions are leptonic and undergo Compton scattering (figure 2.2b).

2.2 Laboratory Bounds on Axions

Axions have never been observed [5, § 91]. Since the dynamics of the axion can be essentially
parametrised by the mass 𝑚𝑎 and coupling 𝑔𝑎𝛾𝛾 (and also the axion–electron coupling 𝑔𝑎𝑒𝑒
for leptonic axions), negative axion detection experiments serve to exclude specific regions of
(𝑚𝑎, 𝑔𝑎𝛾𝛾) parameter space. An exclusion plot of constraints from major laboratory experi-
ments discussed in this section is shown in figure 2.4.

Direct Axion Production

In the presence of a strong, uniform electromagnetic field with ⃗𝐸 ∥ �⃗� so that ∼𝐹 ∧ ∼𝐹 ∝ ⃗𝐸 ⋅ �⃗� is
large, the 𝑎𝛾𝛾 interaction is best viewed as an axion–photon oscillation, analogous to neutrino
flavour oscillation (see figure 2.3) [5, § 91.3.1]. This suggests a scheme for detecting axions by
‘shining light throughwalls,’ whereby a laser is beamed at an optical barrier in a strongmagnetic
field, and any generated axions (freely passing through the barrier) which oscillate back into
photons on the other side are detected. The first such experiment was performed in 1992 with a
3.7 T superconductingmagnet over a length of 4.4m, finding that |𝑔𝑎𝛾𝛾| < 6.7 × 10−7 GeV−1 for
axions lighter than 1meV [26]. The current best limit from light-shining-though-walls (LSW)
experiments, |𝑔𝑎𝛾𝛾| < 3.5 × 10−8 GeV−1, was obtained in 2015 with two 9 T Large Hadron
Collider dipole magnets [27], with

Another consequence of axion–photon oscillation is that light suffers from dichroism3 and
birefringence in a strong, uniform magnetic field �⃗�. The dichroism arises since the polarisation
of light parallel to the magnetic field, ⃗𝐸∥, where ⃗𝐸 ⋅ �⃗� is large, undergoes 𝑎𝛾𝛾 oscillation and is
depleted while ⃗𝐸⟂ remains unaffected [5, § 91.3.2]. A similar process results in birefringence,
where linearly polarised light becomes elliptically polarised, but the experimental limits from
dichroism experiments are stronger: |𝑔𝑎𝛾𝛾| < 3.6 × 10−7 GeV−1 for sub-meV axions [28]. In
2006, a collaboration reported a false positive in a vacuum dichroism experiment, detecting
axions with 𝑚𝑎 ≈ 1.3meV and 𝑔𝑎𝛾𝛾 = 3 × 10−6 GeV−1, but the detection was attributed to
instrumental artefacts two years later [29].

3Generally, dichroism is the dependence of a medium’s optical absorption on the polarization of light. In this
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Figure 2.4: Limits on axion mass 𝑚𝑎 and photon coupling 𝑔𝑎𝛾𝛾 from laboratory experiments. Shaded
regions are experimentally excluded. (LSW ’92 [26], BRFT ’90 [28], LSW ’15 [27], CAST ’17 [32])

Detection of Solar Axions

We also expect low-mass, weakly interacting particles to be produced in the astrophysical plas-
mas found inside stars. Efforts have therefore been made to detect axions of solar origin. In
a strong macroscopic �⃗� field, axions (or indeed, any axion-like particles with a two-photon
vertex) may be converted into x-rays via a reverse Primakoff process, 𝑎 + 𝑒± → 𝑒± + 𝛾. With
standard solar models, the expected axion flux on Earth is

𝜑⊙ ≈ 3.8 × 1011 (1010 GeV |𝑔𝑎𝛾𝛾|)2 cm−2 s−1,

which is significant and detectable for axions with |𝑔𝑎𝛾𝛾| ≳ 10−11 GeV−1 [30].
The Tokyo axion helioscope, initially constructed in 1995 and then continuously upgraded,

utilised a 4 T superconducting magnet on a sun-tracking mount to detect solar axions. In 2008,
it was reported that its negative results implied a limit |𝑔𝑎𝛾𝛾| < 6 × 10−10 GeV−1 for sub-
meV axions [31]. More recently, the CERN Axion Solar Telescope used a decommissioned
9 T LHC dipole magnet in a similar helioscope apparatus to establish a stronger limit: |𝑔𝑎𝛾𝛾| <
6.6 × 10−11 GeV−1, though only for axions of mass 𝑚𝑎 < 0.03 eV [32].

Further laboratory experiments to detect axions are under way (e.g., [33], [34, § 5.3]), but
direct detection on Earth is not the only experimental probe available. Axions may have sig-
nificant roles in stellar evolution, the universe’s early history and as dark matter, placing them
in the domain of cosmology.

case, the medium is the vacuum in regions of large ∼𝐹 ∧ ∼𝐹 .
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3 Axions in Cosmology

With the advent of precision cosmology in the 21st century, particle physicists can use the
entire universe as a laboratory for ever more sensitive experiments. Depending on the strength
and variety of their interactions with other matter, axions may have significant implications
for the evolution of the universe and of astrophysical structures, leaving behind detectable
signatures. Of special interest is the axion’s promise as a dark matter candidate. This section
is a review of the current status of the axion in cosmology; its astrophysical predictions and
observational constraints. Primary sources are Cadamuro, Hannestad et al., [23, 2011] and
Irastorza and Redondo [34, 2018], along with sections of the Particle Data Group’s Review of
Particle Physics [5, 2020].

3.1 The Standard Cosmological Picture

Many cosmological tests of axion-like particles involve predicting relative particle abundances
in the universe at various epochs, such as the baryon-to-photon or neutrino-to-photon ratios.
Such arguments begin with a minimal ‘thermodynamical’ model of the universe as a homoge-
neous, isotropic, expanding background upon which different particle species exist in uniform
thermal equilibrium. The universe’s macrostate is characterised by each species’ abundance and
energy distribution, and is characterised by a cosmological temperature, 𝑇 , quantifying average
energy density. Interactions and processes between species, which at any time may depend on
present particle abundances and energies, define differential relations which can be solved to
determine the abundance of each species at any point in the universe’s evolution. In general,
this is expressed by the Boltzmann transport equation, describing the statistical behaviour of a
thermodynamic system out of equilibrium [34, § 3]

The harsh assumptions of isotropy and homogeneity specify a spacetimewith a Friedmann–
Lemaître–Robertson–Walker (FLRW) metric,

∼
𝑔 = −𝑐2

∼d𝑡2 + 𝑎(𝑡)2( ∼d𝑟2

1 − 𝑘𝑟2 + 𝑟2
∼𝛩)

where 𝑘 ∈ {+1, 0, −1} reflects the type of spatial curvature, ∼𝛩 = ∼d𝜃2 + sin 𝜃 ∼d𝜑2 is the metric
of the unit sphere, and ∼d𝑥2 ≡ ∼d𝑥 ⊗ ∼d𝑥. Standard cosmological models are spatially flat with
𝑘 = 0. The scale factor 𝑎(𝑡) describes the cosmological evolution of the universe and defines
the Hubble parameter, 𝐻 ≔ ̇𝑎/𝑎, or cosmic expansion rate. The equations of general relativity
determine 𝑎(𝑡) uniquely in terms of the mass–energy content of the universe.
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Terminology from cosmology

• thermalisation — the process of a particle species reaching thermal equilibrium (i.e., uniform en-
ergy and abundance) over cosmological scales, mitigated by energy-diffusing self-interactions or
processes with other species.

• freeze-out — the point beyond which the rates of thermalising processes become negligible due to
cooling cosmological temperature or accelerating cosmic expansion. Freeze-out results in persis-
tent non-equilibrium distributions of a particle species, analogous to a change of phase from a gas
to a cooler condensate.

If the rate 𝛤 of a particle interaction is large (corresponding to large probability per unit
spacetime volume for the interaction to occur), then it will provide a mechanism for thermali-
sation of the species involved—or in the case of production and decay processes, will drive the
species to abundance or extinction. If the rate is smaller than the rate of cosmic expansion,
𝛤 ≪ 𝐻 , then the interaction or process will freeze-out and become negligible. Freeze-out may
also result from the cosmological temperature 𝑇 being lower than a processes’ threshold en-
ergy. If a species’ most dominant interactions freeze-out, then it becomes thermally isolated
from other matter and its abundance remains fixed.

3.2 Axion Interactions and Processes

Axions spontaneously decay into photons via the axion-photon vertex at a well-known rate

𝛤𝑎→2𝛾 = 𝑔2
𝑎𝛾𝛾𝑚3

𝑎
64𝜋 ≈ 10−24 s−1(𝑚𝑎

eV )
5
,

where the coupling strength 𝑔𝑎𝛾𝛾 can be approximately written in terms of the mass 𝑚𝑎 (which
introduces an overall 𝒪(1) dependence on the particular axion model) [23]. Thus, for axions to
exist in significant abundance in the present epoch, they must be sufficiently light, or else the
decay process dominates. If they are too light, 𝑚𝑎 < 18 eV, than the axion half-life exceeds the
age of the universe. An inverse decay process 2𝛾 → 𝑎 is also possible, with a rate 𝛤2𝛾→𝑎 ∝ 1/𝑇
increasing as the universe cools. This implies that axions may recouple to photons at late stages
of the universe’s evolution [24].

Axions also interact by the strong force with hadronic matter via the gluon-axion vertex,
giving rise to the Primakoff (and, for leptonic axions, Compton) electron scattering processes
shown in figure 2.2. When the universe is sufficiently hot, 𝑇 ≫ 𝑚𝑎, the rate of Primakoff
scattering 𝛤P ∝ 𝑔2

𝑎𝛾𝛾𝑛𝑒 is proportional to the number density of electrons-plus-positions, 𝑛𝑒
[23]. For leptonic (e.g., DFSZ) axions, Cadamuro et al. [23] approximate the rate of Compton
scattering as

𝛤C ∝ 𝑔2
𝑎𝑒𝑒𝑛𝑒

max {𝑇 2, 𝑚2𝑎}.

These scattering processes, along with photon decay and inverse decay, are the dominant in-
teractions relevant to the cosmological arguments employed by Cadamuro et al. The freeze-out
temperatures of these processes vary non-linearly with axion mass, summarised in figure 3.2.
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Figure 3.1: Temperature 𝑇 of the universe from the Big Bang to the present, with major epochs indicated.

By the analysis of Cadamuro et al., axions remain in thermal equilibrium at all temperatures
for 𝑚𝑎 ≳ 20 keV (𝑚𝑎 ≳ 10 keV for leptonic axions), while lighter axions freeze-out around
𝑇 ∼ 102 keV before eventually recoupling by inverse decay when the universe cools enough.
Extremely light axions, 𝑚𝑎 ≲ 200 eV, remain thermally isolated from all matter forever after
recombination where 𝑇 ≲ 105 K.

3.2.1 Constraints from Big Bang Nucleosynthesis

A few minutes after the beginning of time, when the universe cooled to ∼ 1010 K during Big
Bang nucleosynthesis (BBN), protons and neutrons began to bind together to form light atomic
nuclei. The primary fusion reactions that occurred are:

p + n → 2H + 𝛾
p + 2H → 3He + 𝛾

2H + 2H → 3He + n, 3H + p
3He + 2H → 4He + p

⋮

Photons are involved in the production of deuterium 2H and the lightest isotopes of helium,
but not in the fusion of heavier nuclei. An analysis of the reaction rates provides a relationship
between the photon abundance 𝑛𝛾 and the abundance of light nuclei (i.e., baryons, 𝑛𝐵). A
larger initial baryon–photon ratio 𝜂 = 𝑛𝐵/𝑛𝛾 corresponds to more efficient production of
deuterium and ultimately to a larger helium 4He abundance in the present. Relative element
abundances in the present epoch constrain the value of the initial baryon–photon ratio to 𝜂 =
(6.2 ± 0.4) × 10−10 [5, § 24.4].

Equipped with a cosmological model of axion interactions, Cadamuro et al. solve the asso-
ciated Boltzmann equation for the axion abundance 𝑛𝑎 over time as a function of mass 𝑚𝑎. At
later epochs, the axions eventually decay by 𝑎 → 2𝛾, increasing the entropy and abundance
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of photons in proportion to 𝑛𝑎 at late times. This is measurable as an increase of the tempera-
ture of the cosmic microwave background (CMB), or equivalently, as a decrease in abundance
of baryons and neutrinos relative to the CMB. This can be compared to observation and used
to limit the photon excess due to axion decay, in turn limiting 𝑛𝑎, which constrains the axion
mass 𝑚𝑎. Cadamuro et al. find that the predicted deuterium abundance is reduced two standard
deviations below its observed value for axion masses less than 300 keV, thus obtaining the limit

𝑚𝑎 ≳ 300 keV (3.1)

at 2𝜎 = 97% confidence [23]. Axions within this bound decay into photons sufficiently quickly
so as not to deviate the outcome of BBN from observation. Such heavy axions are thermalised
at all epochs, even purely hadronic axions which do not undergo Compton scattering (see fig-
ure 3.2). The limit (3.1) therefore applies to all axion types, and is far more restrictive than
laboratory constraints.

3.2.2 Constraints from Stellar Evolution

Galaxies consist of globular clusters (GCs), each typically consisting of between 105 and 107

stars. A typical galaxy like our own hosts hundreds of GCs, each one a gravitationally self-
contained island of stars. The population of a GC can be partitioned into different branches by
stage of stellar evolution, as in figure 3.3. Young stars exist in the main sequence and approach
the red giant branch (RGB) as they burn hydrogen fuel and produce helium. Red giants approach
the helium fusion phase as their cores become He-dense and H-depleted. The ignition of He-
fusion in late-stage red giants causes an immediate rise in temperature and rate of He-fusion,
transitioning the star into a new equilibrium state in the horizontal branch (HB) [34, § 3.2]. The
parameter 𝑅 ≔ 𝑁RGB/𝑁HB is defined as the population ratio between the horizontal and red
giant branches in a given GC, and is a useful observable for testing models of stellar evolution.
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The alleged production of axions in stars has implications for stellar evolution. Specifically,
axion production via the Primakoff process 𝛾 + 𝐴 → 𝐴 + 𝑎 in stellar plasma results in a hotter
core temperature and faster burning of helium fuel in red giants. This affects the relative dura-
tions of the RGB and HB stages. The observed population of stars in each stage of the stellar
sequence is statistically proportional to the stage’s average lifetime, and thus the observable 𝑅
parameter measures relative stage lifetimes, 𝑅 = 𝑁RGB/𝑁HB = 𝑇RGB/𝑇HB. Thus, the axion–
photon interaction strength may be constrained by comparing the predicted 𝑅-parameter to
those observed in local GCs. A recent survey [35, 36] of 39 of GCs reports the constraint
|𝑔𝑎𝛾𝛾| < 6.5 × 10−11 GeV−1 at 95% confidence [34, § 3.2]. Stronger interacting axions cause
horizontal branch stars to burn too quickly, reducing the 𝑅-parameter below the observed
window.

3.3 Outlook and Conclusion

It is only a possibility that axions exist, and if they do, they remain in the ever-shrinking areas
of parameter space (a modern exclusion plot shown in figure 3.4). Despite this, axion phe-
nomenology is earning increasingly more attention. Many more cosmological tests other than
those mentioned in this report exist, and experiments are currently under way to further ex-
plore the axion parameter space [1, 33, 34]. Arguably, the reason for its popularity is that the
axion conceivably plays a central role in open problems in more than one area of cosmology.
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A Solution to Dark Matter, Inflation and Baryogenesis?

Most notably, the axion exhibits all the necessary features for a cold dark matter candidate.
There are several proposed theoretical frameworks by which the axion comes to contribute (in
some cases, totally) to the present dark matter density, estimated to be 𝜌𝐶𝐷𝑀 ≈ 0.45GeV cm−3

[1, § 5.3]. One such framework is the misalignment mechanism, whereby the present day en-
ergy density 𝜌𝐶𝐷𝑀 is stored in the zero modes of the ̄𝜃-vacuum angle as it continues to un-
dergo lightly damped oscillation about the potential minimum at ̄𝜃 = 0 after acquiring a large
nonzero angle after inflation [1, § 5.3]. Assuming axions as solely responsible for dark matter,
the axion number density would be 𝑛𝑎 ≈ 4.5 × 1014 (µeV

𝑚𝑎
) cm−3. There are numerous active

haloscope experiments designed to detect ambient axions, making use of coherence effects to
overcome their incredibly weak interactions: the Axion Dark Matter eXperiment (ADMX) [38]
is the longest standing [34, § 7].

Inflation is the hypothesized period of rapid cosmic expansion in the early universe, invoked
to explain certain observed features of the cosmos. Degrees of freedom known as inflatons
drive inflation until they reach a potential minimum. The inflaton potential must be very flat
compared to the Hubble scale 𝑐/𝐻 at the time of inflation. Axions with a suitable energy
scale 𝑓𝑎 and mass 𝑚𝑎 (incidentally, very different to CDM axions) provide a appropriately flat
potential 𝑉 ( ̄𝜃), making them especially good inflaton candidates [24, § 7].

If that were not enough, the problem of baryogenesis—the evident matter–antimatter asym-
metry in the universe—may plausibly be explained by a cosmological evolution of the axion
field. The ̄𝜃-angle must be very small today, as constrained by the neutron electric dipole mo-
ment [14], but it is conceivable that ̄𝜃 ∼ 𝒪(1) in the very early universe, which may have
resulted in preferential generation of matter over antimatter [1, § 7.1].

All these features earn the axion a status of special interest in particle physics and cosmol-
ogy, even with a pessimistic view of its existence. It has been claimed [34] that the rapidly
improving experimental landscape makes it likely that the axion, if it exists, will be detected in
the near future. In that case, a broad subset of physics would enjoy a revitalising breakthrough,
and half a century’s worth of theoretical discovery would become tangible progress.
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