
Central limit theorem
Let (𝑋1,…,𝑋𝑁) be independent and identically distributed random variables with mean 𝜇 and
variance 𝜎2.
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In other words, their mean converges in distribution to a normal distribution with standard
deviation 𝜎√

𝑁
.

Proof. We are interested in the distribution of the mean 𝐼 ≔ 1
𝑁 ∑

𝑁
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variable itself. Define standardised variables 𝑍𝑖 =
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𝜎  so that ⟨𝑍𝑖⟩ = 0 and ⟨𝑍2𝑖 ⟩ = 1. Define 
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𝑖=1 𝑍𝑖. We will show that 𝜉𝑁 ⟶𝒩(0, 1) as 𝑁 ⟶∞ by showing that 𝜉 has the

same moment-generating function as the standard normal distribution.
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Therefore, in the limit, lim𝑁→∞𝑀𝜉𝑁(𝑡) = exp(
𝑡2
2 ), which is the moment-generating function for

𝒩(0, 1).

Finally, note that
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which implies that 𝐼 = 𝜎√
𝑁
𝜉 + 𝜇 ∼ 𝒩(𝜇, 𝜎2𝑁 ).
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