Proof that det ∘ $exp = exp ∘ tr$

Ingredient. *Triangular matrices are closed under multiplication*. Let *A* and *B* be upper triangular matrices, so that $A_{ij} = B_{ij} = 0$ for $i > j$. From

$$
(AB)_{ij} = \sum_{k} A_{ik} B_{kj} = \sum_{k} \begin{cases} A_{ik} B_{kj} & \text{if } i \le k \le j \\ 0 & \text{otherwise} \end{cases}
$$

it follows that AB is also upper triangular. In particular, $\left(AB\right)_{ii} = A_{ii}B_{ii}.$

Ingredient. *Only diagonal elements of triangular matrices affect the trace.*

$$
\text{tr}(AB) = \sum_{k} (AB)_{kk} = \sum_{k} A_{kk} B_{kk} = \text{diag}(A) \cdot \text{diag}(B)
$$

Ingredient. *Only diagonal elements of triangular matrices affect the determinant*. If A is triangular, then

$$
\det(A) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n A_{i\sigma(i)} = \prod_{i=1}^n A_{ii}
$$

because all the permutations σ except the identity have some $1 \leq k \leq n$ such that $\sigma(k) < k$.

Ingredient. Any square matrix A can be put in Jordan normal form $A = PJP^{-1}$, where J is *upper triangular.*

$$
det(exp(A)) = det(exp(DP^{-1}))
$$

= det(P exp(J)P⁻¹)
= det(P) det(exp(J)) det(P⁻¹)
= det(exp(J))
=
$$
\prod_{i=1}^{n} exp(J)_{ii}
$$

=
$$
\prod_{i=1}^{n} \sum_{n=0}^{\infty} \frac{1}{n!} (J^n)_{ii}
$$

=
$$
\prod_{i=1}^{n} \sum_{n=0}^{\infty} \frac{1}{n!} (J_{ii})^n
$$

=
$$
\prod_{i=1}^{n} exp(J_{ii})
$$

= exp
$$
\left(\sum_{i=1}^{n} J_{ii}\right)
$$

= exp(tr(J))
= exp(tr(PD⁻¹J))
= exp(tr(PD⁻¹J))
= exp(tr(A))