Fisher information metric on the space of Gaussians

Consider the space of univariate Gaussian distributions parametrised by (p, o) € R x (0, 00). The
Gaussian Kullback-Leibler divergence from (u, o) to (pq,0;) is:
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This has a global minimum when the points (4, o) and (¢, 0;) coincide, K (u, o) = 0. We can
show this because, at this point, the gradient vanishes:
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and the Hessian (matrix of second derivatives) is positive definite:
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An equivalent way to write this is as a metric tensor
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so that g(i, ¥) = 4T (V2K)?7 for any vectors 4, ¥ € R2.

Under a change of coordinates y = V2z, 0 = y, the metric g is (twice) the metric of the Poincaré
half-plane model of hyperbolic space.
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