
Fisher information metric on the space of Gaussians
Consider the space of univariate Gaussian distributions parametrised by (𝜇, 𝜎) ∈ ℝ × (0,∞). The
Gaussian Kullback–Leibler divergence from (𝜇, 𝜎) to (𝜇1, 𝜎1) is:
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This has a global minimum when the points (𝜇, 𝜎) and (𝜇1, 𝜎1) coincide, 𝐾(𝜇, 𝜎) = 0. We can
show this because, at this point, the gradient vanishes:
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and the Hessian (matrix of second derivatives) is positive definite:
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]

An equivalent way to write this is as a metric tensor

𝑔 = d𝜇2 + 2d𝜎2

𝜎2

so that 𝑔(𝑢⃗, ⃗𝑣) = 𝑢⃗𝑇 (∇2𝐾) ⃗𝑣 for any vectors 𝑢⃗, ⃗𝑣 ∈ ℝ2.

Under a change of coordinates 𝜇 =
√
2𝑥, 𝜎 = 𝑦, the metric 𝑔 is (twice) the metric of the Poincaré

half-plane model of hyperbolic space.

https://jollywatt.github.io/notes/kl-div-between-gaussians
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