The Faddeev-LeVerrier algorithm

The Faddeev-LeVerrier algorithm may be used to determine the inverse, determinant, and
characteristic polynomial of an n x n matrix. The algorithm terminates in n steps, where each
step involves a single matrix multiplication and only integer division. It works like magic!

FADDEEV-LEVERRIER ALGORITHM

1 given an n X n matrix A

2 ¢c,=1

3 N+0

forke (n—1,...,1,0)
N < N +c¢, 41

6 Cp = ﬁtr(AN)

7 return

8 | A'=—-N/c,

det(A) = (—1)"¢,

10 x(A) = ZZ:O cpA*

(S B

=}

Also refer to a Julia implementation.

Derivation

Start with the characteristic polynomial of A.

n

X(A) = det(\I — A) =) "¢, A\
k=0

Useful fact.
The adjunct of a matrix, adj(X), satisfies det(X)I = A adj(X).

If Aisn X n, then det(X), and hence the entries of X adj(X), are degree n polynomials in
the entries of A. Hence, the entries of adj(X) are degree n — 1 polynomials.

The entries of N()\) := adj(Al — A) are A-polynomals of order n — 1, so N () = Z:;é N AF
where N, are matrices. From det(A\l — A)I = (A — A)N(A),

n—1
det (Al — (AL—A) > N A*
k=0
n—1
=—AN, + Z(Nkfl — AN A® + N, _ X"
k=1

Equating coefficients of A with x ()L, we obtain:

CO]I - - ANO
Ck:[[== Nk—l _ANk:
CnI[= Nn—l

To remember these, just write ¢, I = N,_; — AN, for all 0 < k < n with the understanding that
N, vanishes outside the range 0 < k < n — 1. Equivalently,

Nip = N1 — el

gives a descending recurrence relation for N, in terms of the coefficients c,.

Finding c;, in terms of A and N,

This stroke of genious is due to (Hou, 1998).
Useful fact: Laplace transform of derivative.
oif / F(t)et dt
= f(t)e | +s/oof et dt
0
= —1(0) + sL{f(t)}(s)

Consider

= AeAt
dt

and perform the Laplace transform to obtain
—I+sL{et} = AL{e}
and finally take the trace:
str £{eAt} —n = tr(AL{e}) (1)

Useful fact: the trace of a matrix exponential in terms of eigenvalues.

If \; are the eigenvalues of A then tr(4) = }_ A;. Also, A can be put in Jordan normal form
A = PJP~! where] is triangular with diag(J) = (A;, ..., A,,)- Since it is triangular,
diag(J*) = ()\’1“,.. AF).

Therefore, tr(A*) = tr(PJ*P~!) = tr(J*P~1P) = tl‘(Jk) PN Y.

tr
Consequently, tr(e4?) = P 0 & tr(Ak) Z;oo o ZZ AF=2 elit,

We now compute the terms in Equation 1.

L{et} = / eA=sDt g — (A —) TeA—sDt| = (sT— A)7!
0

t=0

Caution.
I'm uncomfortable with these indefinite integrals. Why should lim, ,__ e4=*D* converge?
Note that from x(A) = det(Al — A) = (AL — A)N () we have
1 N
(AL —A) ' = N (2)
x(A)

Let (A, ..., A,,) be the eigenvalues of A. Then A — sl has eigenvalues \; — s.

tr £{e} = trelA—st g¢ = Z/ i)t qt = Z 1)\
0 §T A

0 =1 =1 ?

Recall that the roots of the characteristic polynomial of A are its eigenvalues, so x(s) =

T, (s — X,

we{et} =30 TG —x) = in <H<S B Ai)) = g = X/<s>) (3)

i=1 x(s

Substituting Equation 2 and Equation 3 into Equation 1, we have

sx'(s) —nx(s) = tr(AN(}))

(k —n)c,s® = Z tr(AN,)s"
k=0 k=0

which, expanding and equating powers of A,

tr(AN,)
¢ = ——=~
k k—n
for all 0 < k < n where we define N,, = 0.
Final algorithm
Useful fact.
x(A) = o+t AL+, A

=det(—A) + -+ tr(=A)AT + A

co = (—1)"det(A), ¢,y =—tr(4), c,=1

Visual summary

det)\]I_ ch)\ Ck]I:Nkfl_ANk Ck:trk(;4—Nk) { At} S]I_

-n
/ Y
equate coefficients iterate
4 ' Cos -y Cpy, At - At
det X =/\XadJX Ny, N, str(]{e }— n tr(AL'{e })

n—1 deAt
A) =) Nk A1 =—N,/c, trlg —
k=0

References

Hou, S.-H. (1998). Classroom Note: A Simple Proof of the Leverrier-Faddeev Characteristic
Polynomial Algorithm. STAM Rev., 40(3), 706-709. https://doi.org/10.1137/S003614459732076X

https://jollywatt.github.io/notes/flv-algorithm
https://doi.org/10.1137/S003614459732076X

	The Faddeev–LeVerrier algorithm
	Derivation
	Finding ck in terms of A and Nk
	Final algorithm
	Visual summary

	References

