Maximising likelihood for multivariate Gaussian distributions

When you find the mean of some data, what you are really doing is finding a parameter which
maximises the likelihood.

For instance, assume some points {Z, ..., # } C R? are normally distributed. The conditional
probability of the data is

which is also the likelihood of the parameters fi and 3. It is often easiler to manipulate the

logarithm of the likelihood:
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Fitting /i to data

To find the mean ji which maximises the likelihood, note that log P is quadratic in i, so the
maximum occurs at the unique point where its derivative vanishes.

Consider the differential 6 log P induced by i — i + dpi:
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If the likelihood is at a local maximum, then é log P must vanish for any §i. This holds when:
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Fitting ¥ to data

To find the covariance matrix > which maximises the likelihood, consider the differential

likelihood induced by ¥ — ¥ + §3..
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Use the identities
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and take the trace to obtain
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where we use the cyclic property of the trace in the last term.

If the likelihood is at a local maximum, then it vanishes for any 3. Since §X is arbitrary, this
scalar equality between trace implies equality between the matrices themselves:
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This vanishes when the covariance matrix is given by:
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