
Maximising likelihood for multivariate Gaussian distributions
When you find the mean of some data, what you are really doing is finding a parameter which
maximises the likelihood.

For instance, assume some points { ⃗𝑥1,…, ⃗𝑥𝑁} ⊂ ℝ𝑑 are normally distributed. The conditional
probability of the data is

𝑃( ⃗𝑥𝑖 | ⃗𝜇, Σ) =∏
𝑁

𝑖=1

1√
𝜏𝑑 detΣ

exp(−1
2
( ⃗𝑥𝑖 − ⃗𝜇)𝑇Σ−1( ⃗𝑥𝑖 − ⃗𝜇))

which is also the likelihood of the parameters ⃗𝜇 and Σ. It is often easiler to manipulate the
logarithm of the likelihood:
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Fitting ⃗𝜇 to data

To find the mean ⃗𝜇 which maximises the likelihood, note that log 𝑃  is quadratic in ⃗𝜇, so the
maximum occurs at the unique point where its derivative vanishes.

Consider the differential 𝛿 log 𝑃  induced by ⃗𝜇 → ⃗𝜇 + 𝛿 ⃗𝜇:
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If the likelihood is at a local maximum, then 𝛿 log 𝑃  must vanish for any 𝛿 ⃗𝜇. This holds when:
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Fitting Σ to data

To find the covariance matrix Σ which maximises the likelihood, consider the differential
likelihood induced by Σ → Σ+ 𝛿Σ.
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Use the identities

𝛿 det𝐴 = tr[𝐴−1𝛿𝐴] det𝐴

𝛿(Σ−1) = Σ−2𝛿Σ = 𝛿ΣΣ−2

and take the trace to obtain
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where we use the cyclic property of the trace in the last term.

If the likelihood is at a local maximum, then it vanishes for any 𝛿Σ. Since 𝛿Σ is arbitrary, this
scalar equality between trace implies equality between the matrices themselves:
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This vanishes when the covariance matrix is given by:
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