The hyperbolic space of univariate Gaussians

An interesting relationship exists between the space of univariate Gaussian distributions (p, o) €

R x (0, 00) and hyperbolic geometry. This relationship can be seen with the following steps:

1. There is a natural notion of “distance” from one distribution to another, the Kullback—Leibler

divergence KL(p : q), although this is not strictly a distance metric because KL(p : q) #

KL(q : p) in general. The divergence between two univariate Gaussians has the explicit form:
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2. The divergence from p to q is zero when p = ¢, and positive otherwise. Thus, the first

derivatives of KL(p : q) with respect to the parameters of p vanish at the point p = ¢, but the

second derivatives are positive. These positive second derivatives from a symmetric positive-

definite matrix. This defines a metric tensor, known as the Fisher information metric, on the

space of distributions. For Gaussians, this works out to be

where 4 = (u - uU) and ¥ = (v o U(,) are displacement vectors for the parameters. In the style

of differential geometry, this is equivalently written as

where g(u,v) = (4, V).
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3. The space of univariate Gaussian distributions equipped with the metric (1) scaled by half, g/2,

is isometric to hyperbolic 2-space. In particular, it is isometric to one sheet of the unit
hyperboloid embedded in R3 with the metric diag(+1, +1, —1).

The isometry is most easily expressed by factoring it into a sequence of isometries between

various spaces. The table below shows how to move from (, ) coordinates parametrising the

upper sheet of the unit hyperboloid 22 = 22 + y? + 1 to (u, o) coordinates.
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See [hyperbolic-isometries] for numerical verifications of the relationships above.
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